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Abstract—In recent years, several frameworks have been
introduced to facilitate massively-parallel data processing on
shared-nothing architectures like compute clouds. While these
frameworks generally offer good support in terms of task
deployment and fault tolerance, they only provide poor assistance
in finding reasonable degrees of parallelization for the tasks to
be executed. However, as billing models of clouds enable the
utilization of many resources for a short period of time for the
same cost as utilizing few resources for a long time, proper levels
of parallelization are crucial to achieve short processing times
while maintaining good resource utilization and therefore good
cost efficiency.

In this paper, we present and evaluate a solution for detecting
CPU and I/O bottlenecks in parallel DAG-based data flow pro-
grams assuming capacity constrained communication channels.
The detection of bottlenecks represents an important foundation
for manually or automatically scaling out and tuning parallel
data flow programs in order to increase performance and cost
efficiency.

I. INTRODUCTION

Scientific computing today faces datasets which are increas-

ing exponentially in both complexity and size. The challenge

of processing these datasets in a reasonable amount of time

has made a case for new approaches in the area of parallel

and distributed computing. Recently, terms like many-task

computing (MTC) [1] or data intensive scalable computing

(DISC) [2] have been coined to describe a computational

paradigm in which complex processing jobs are split into

a large number of loosely-coupled tasks and executed in a

parallel fashion.

While several data processing frameworks have already

demonstrated good support for MTC-like jobs [1] (in terms

of scalability, fault tolerance, etc.), they only offer very lit-

tle support with respect to choosing a reasonable level of

parallelization for those jobs. Current tutorials on this topic

(e.g. [3]) mainly propose back-of-the-envelope calculations

and ignore the characteristics of the job, e.g. its computational

complexity. Furthermore, in many cases MTC-like processing

jobs consist of several individual tasks. However, the challenge

of adjusting the individual tasks’ degree of parallelization

according to their computational complexity is not addressed

at all at the moment.

This lack of assistance is problematic because exactly this

relationship between a task’s computational characteristics

and its degree of parallelization is a major factor towards

high processing throughput and system utilization. Since the

tasks of such MTC-like jobs are typically executed following

a classic producer-consumer pattern [4], [5], [6], each task

depends on sufficient amounts of input data in order to

reach its optimal throughput. Therefore, for computationally

demanding tasks, a low degree of parallelization may easily

result in CPU bottlenecks, which slow down the execution

of successive tasks and leave large parts of the compute

resources underutilized. In contrast to that, choosing a degree

of parallelization that is too high for computationally modest

tasks can lead to significant overhead for task deployment and

instantiation.

In the area of cloud computing, operators of Infrastruc-

ture-as-a-Service (IaaS) clouds like Amazon EC2 [7] or the

Rackspace Cloud [8] let their customers rent a virtually

unlimited number of CPU cores and amount of main memory

and charge them for the usage of the resources on an hourly

basis. In their cost model using a thousand CPU cores for

an hour is no longer more expensive than using a single

CPU core for a thousand hours. Therefore it is tempting

for researchers to strive for shorter completion time of jobs

by increasing their level of parallelization. Of course, the

vast majority of compute jobs, especially the data-intensive

ones, cannot be parallelized indefinitely. At some level of

parallelization, the I/O subsystem of the rented cloud resources

(i.e. the bandwidth of the hard disks and the network links) will

become an insuperable bottleneck. Parallelization beyond that

point will leave the rented CPU cores underutilized and will

unnecessarily increase the cost for executing the job. However,

at what level of parallelization this ultimate bottleneck will

occur is hard to predict.

But even in classic cluster environments the appropriate

degree of parallelization is often not easy to choose. Limiting

factors such as the number of available CPU cores or the

available amount of main memory typically provide a natu-

ral upper bound for a reasonable number of parallel tasks.

However, choosing the individual scale-out of interdependent

tasks, which run on the cluster in a distributed fashion, quickly

becomes a considerable obstacle.

In this paper we approach the problem of finding sensible

levels of parallelization for MTC-like data processing jobs

which can be described as directed acyclic graphs (DAGs).

Therefore we devise a mechanism to detect CPU and I/O

bottlenecks during the job runtime and assist the developer in

improving the scale-out of his application through successive

runs of the same job. Our overall optimization goal is to
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discover the maximum level of parallelization for each of

the processing job’s tasks which still yields a high overall

system utilization. The presented approach is computationally

lightweight and requires neither any modifications of nor

cooperation from the tasks themselves.

Section II provides a thorough description of the class

of processing jobs our work is applicable to. After a brief

problem statement in Section III, we discuss the concrete

bottleneck detection algorithms in Section IV. Section V

puts the theoretical consideration of the bottleneck problem

into practice using our execution framework Nephele [9].

In Section VI we demonstrate the usefulness of our approach

with the help of a concrete use case. Finally, Section VII

discusses related work while Section VIII concludes the paper

and sheds some light on our future endeavors with regard to

optimizing parallel data flow programs.

II. PREREQUISITES

The bottleneck detection approach we will present in this

paper can be applied to arbitrary MTC-like processing jobs

which fulfill the assumptions described in the following:

• Assumption 1: The processing job can be modeled as a

DAG G = (VG, EG). Therein, each vertex v ∈ VG of the

DAG represents a separate task of the overall processing

job. The directed edges e ∈ EG between the vertices

model the communication channels through which data is

passed on from one task to the next. Figure 1 a) illustrates

an example DAG with four vertices, which represent four

distinct tasks.

• Assumption 2: The interaction between the individual

tasks of the processing job follows a producer-consumer

pattern. Tasks exchange data through communication

channels in distinct units we will call records. We assume

all communication between tasks takes place through

communication channels modeled in the DAG.

• Assumption 3: A communication channel is unidirec-

tional and can be modeled as a buffered queue (FIFO)

of records. The channel’s capacity shall be the size of

the buffer, i.e., an arbitrary but fixed value which states

the number of records a producing task can write to the

channel without having another task consuming the data.

Any attempts to write records to a channel beyond its

capacity limit will cause the producing task to be blocked

until the consuming task has removed at least one record

from the channel. Analogous to this, any attempt to read

from a channel which currently does not hold any records

will cause the consuming task to be blocked until at least

one record is written to the channel.

• Assumption 4: Each task of the DAG consists of se-

quential code. It can be parallelized in a single program,

multiple data (SPMD) manner so that each task instance
receives a subset of the task’s overall input data. Fig-

ure 1 b) illustrates a possible job DAG with those parallel

task instances.

• Assumption 5: At runtime, each task instance is in

one of the following states: PROCESSING or WAIT-

ING. A state change is always triggered by one of its

connected communication channels. A task instance is

in state WAITING when it is either waiting to write

records to an outgoing channel or waiting for records

to arrive from an incoming channel; otherwise it is in

state PROCESSING. Hence, if sufficient input records

are available and capacity is left to write out the result

records, a task instance will not enter the WAITING

state. The current state of a task instance can be accessed

anytime during its execution. Note that even waiting for

I/O other than communication channel I/O (e.g. reading

or writing from/to hard disk) is therefore considered as

processing time.

• Assumption 6: At runtime, each communication channel

is either in the state SATURATED when its buffer’s

capacity limit has been reached; otherwise it is in state

READY. Similar to the tasks, we assume the current

state of a channel can be accessed anytime throughout

its lifetime.

• Assumption 7: If a specific record is processed by the

same task in different job executions, the performance

characteristics (processing time, value and size of pro-

duced output) remain the same. This assumption allows

profiling a job and using the gained knowledge to improve

a second execution of the job.

III. PROBLEM DESCRIPTION

The general idea of a bottleneck is that it is either a task or

a communication channel in the job’s DAG that slows down

other parts of the processing chain and that the processing

time of the entire job would improve if the bottleneck were to

be alleviated in some way. We shall define two different types

of bottlenecks:

• CPU bottlenecks are tasks whose throughput is limited

by the CPU resources they can utilize. CPU bottlenecks

are distinguished by the fact that they have sufficient

amounts of input data to process, however, subsequent

tasks in the processing chain suffer from a lack thereof.

• I/O bottlenecks are those communication channels which

are requested to transport more records per time unit

than the underlying transport infrastructure (e.g. network

interconnects) can handle.

The problem is to detect such bottlenecks using only the

information on the task and channel states which have been

described in the previous section. Through this abstraction

our approach becomes independent of the concrete physical

compute and communication resource, which may be hard to

observe in (shared) virtualized environments like IaaS clouds.

It is important to point out that our bottleneck detection

approach considers the individual tasks of a job DAG. This

means, we do not aim at detecting CPU or I/O bottlenecks at

individual parallel instances of a task. Bottlenecks at individual

task instances typically indicate load balancing problems. They

do not provide any clues about bottlenecks which stem from

inappropriate levels of parallelization of distinct tasks, which

is the focus of this paper. So although a task may be executed

as hundreds or thousands of parallel instances, algorithmically

we will treat it as a single task.



3

������

������ �����	

�����


(a)

������

������ �����	

�����


(b)

Fig. 1. An exemplary directed acyclic graph from a non-parallelized, conceptual point of view (a) and a parallelized, execution point of view (b)

Multiple bottlenecks might exist within a job at runtime.

Moreover, eliminating a bottleneck at one specific task might

create another bottleneck at a different task. Hence, we regard

bottleneck elimination essentially as an iterative process, that

always starts with bottleneck detection. The latter is the

problem we deal with in this paper.

IV. DETECTING BOTTLENECKS

We will now present an algorithm that is capable of de-

tecting both CPU and I/O bottlenecks in DAG-based parallel

data flow programs. The algorithm is applicable to any data

processing job which fits the model and assumptions presented

in Section II. It is triggered periodically during the job

execution.

Algorithm 1 illustrates the overall approach of our bottle-

neck detection algorithm. The algorithm is passed the DAG G
which represents the currently executed job. Initially, the func-

tion ReverseTopologicalSort(G) (line 1) creates and returns

a list LRTS with all vertices of G. The order of the vertices

within the list corresponds to a reverse topological ordering,

i.e. vertices with no outgoing edges appear first in the list.

Algorithm 1 DetectBottlenecks(G := (VG, EG))

1: LRTS ← ReverseTopologicalSort(G)
2: for all v in LRTS do
3: v.isCpuBottleneck ← IsCpuBottleneck(v,G)
4: end for
5: if �v ∈ LRTS : v.isCpuBottleneck then
6: for all v in LRTS do
7: Ev = {(v, w)|w ∈ VG ∧ (v, w) ∈ EG}
8: for all e ∈ Ev do
9: e.isIoBottleneck ← IsIoBottleneck(e,G)

10: end for
11: end for
12: end if

The list LRTS is then traversed from the beginning to the

end. For each vertex v we check whether v is considered a

CPU bottleneck. The particular properties for a vertex to meet

the CPU bottleneck condition are checked within the function

IsCpuBottleneck(v,G) (line 3), which is explained later in

this section. The result of the check is returned and stored in

the variable v.isCpuBottleneck .

In order to detect I/O bottlenecks, we take a similar ap-

proach. Again, we traverse each vertex v of the job DAG

G according to their reverse topological order. For each

outgoing edge e = (v, w) of v we check whether e meets

the conditions of an I/O bottleneck. However, we only perform

the detection if no CPU bottleneck has been discovered before.

The discussion of Algorithm 3 later in this section will clarify

the necessity for this constraint.

Algorithm 2 describes how we check whether a particular

vertex v ∈ VG is a CPU bottleneck. The algorithm checks for

two conditions which must be fulfilled in order to classify v
as a CPU bottleneck.

A crucial prerequisite for a CPU bottleneck is that the

task represented by vertex v spends almost the entire CPU

time given to it in the state PROCESSING. We introduce the

function pt(v) which shall be defined as the arithmetic mean

of the fractions of time the task’s instances spent in the state

PROCESSING during the last time unit of their execution.

Synchronization issues may cause individual task instances to

spend short periods of time in the state WAITING. For this

reason we introduce a threshold α for pt(v) which must be

exceeded so that v is considered a bottleneck. In our practical

experiments we found 90% to be a reasonable value for α.

Algorithm 2 IsCpuBottleneck(v, G)

1: if pt(v) ≤ α then
2: return FALSE
3: end if
4: if ∃s ∈ vsucc∗(v,G) : s.isCpuBottleneck then
5: return FALSE
6: end if
7: return TRUE

The second condition for a CPU bottleneck considers the

set of v’s successors, vsucc∗(v,G), i.e. the vertices which can

be reached from v. Formally, a vertex s is in vsucc∗(v,G) if

there exists a path p = (v1, ..., vn) such that v1 = v, vn = s
and (vi, vi+1) ∈ EG, 1 ≤ i < n. For each such successor s
we check if s has been classified as a CPU bottleneck. The

order in which we traverse the vertices in the job DAG G
guarantees that the CPU bottleneck flag s.isCpuBottleneck
of all of vertex v’s successors has been updated before the

function IsCpuBottleneck is called with v itself.

The necessity for this second condition becomes apparent

when recalling our definition of a CPU bottleneck. According

to that definition, a CPU bottleneck is characterized by high

CPU load and the fact that it provides successor vertices with

insufficient amounts of input data. However, if any successor

s of vertex v was already identified as a CPU bottleneck,

this would mean s does not suffer from insufficient amounts

of input data because the amount of input data s receives is
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sufficient to max out its CPU time. As a result, classifying

vertex v as a CPU bottleneck requires all of its successors not

to be classified as CPU bottlenecks.

Algorithm 3 IsIoBottleneck(e := (v, w), G)

1: if st(e) ≤ β then
2: return FALSE
3: end if
4: if ∃s ∈ esucc∗(v,G) : s.isIoBottleneck then
5: return FALSE
6: end if
7: return TRUE

After all CPU bottleneck flags have been updated Algo-

rithm 3 checks whether an edge should be considered an I/O

bottleneck. For an edge e = (v, w) ∈ EG, st(e) denotes the

arithmetic mean of the fractions of time the communication

channels represented by the edge e spent in the state SATU-

RATED during the last time unit of v’s execution.

Similar to CPU bottlenecks, we consider two conditions

for I/O bottlenecks. First, st(e) must be above a threshold β
which indicates that the communication edges represented by

the edge e spent the majority of the considered time interval

in the state SATURATED. In practice we found 90% to be

a reasonable threshold for β, so temporary fluctuations in the

channel utilization do not lead to wrong bottleneck decisions.

The second condition again considers the successors of an

edge e. By esucc∗(e,G) we shall denote the set of successor

edges of e. Formally, an edge s = (t, u) is in esucc∗(e,G)
if there exists a path p = ((v0, v1), ..., (vn−1, vn)) such that

(vi, vi+1) ∈ EG, 0 ≤ i < n and v0 = v, v1 = w, vn−1 = t,
and vn = u. An edge e is only classified as an I/O bottleneck

if no successor edge has been classified as an I/O bottleneck

before. Again, the order in which we traverse the edges ensures

the appropriate update of the I/O bottleneck flags.

The I/O bottleneck approach bears some discussion. Gen-

erally, there exist two possible reasons for high values of

st(e). The first reason is that the maximum throughput rate

of the underlying transport infrastructure which backs the

communication channel has been reached. This corresponds

to our definition of an I/O bottleneck in Section III. The

second possible, however spurious, reason is an insufficient

consumption rate of the task which consumes data from e.

This, in turn, can be caused by two circumstances: First, a

CPU bottleneck in the DAG could affect the consumption rate

of the respective task. However, since we only check for I/O

bottlenecks if no CPU bottleneck has been detected before,

this cause can be eliminated. Second, another I/O bottleneck

could exist in the remainder of the processing chain. Yet,

this is impossible because of the second condition (line 4)

of Algorithm 3.

V. PRACTICAL IMPLEMENTATION

After having described our bottleneck detection algorithm

in theory we will now highlight its practical implementation

as part of our data processing framework Nephele [9]. This in-

cludes a brief introduction of Nephele’s fundamental concepts

as well as a discussion on how the respective state of tasks

and their communication channels can be obtained at runtime.

Finally we will present a graphical user interface (GUI)

which provides immediate visual feedback of the detected

bottlenecks during the job’s execution and thereby assists

developers to determine a reasonable scale-out for their jobs.

A. The Nephele Execution Framework

The basis for the implementation of our bottleneck detection

approach is the Nephele framework [9]. Nephele executes

parallel data flow programs which are expressed as DAGs

on large sets of shared-nothing servers, e.g. IaaS clouds. It

keeps track of task scheduling and setting up the required

communication channels. In addition, it dynamically allocates

the compute resources during program execution and helps

to mitigate the impact of temporary or permanent hardware

outages.

Nephele’s architecture is based on a classic master-worker

pattern. A central component called the Job Manager coordi-

nates and distributes tasks among of a set of workers, which

are called Task Managers.

Following the model introduced in Section II, each vertex

of a Nephele DAG represents a task of the overall processing

job. Each task can be assigned to different (types of) compute

nodes. In addition, the level of parallelization can be adapted

for each task of the DAG individually. E.g., it is possible

to create a large number of parallel instances for compute-

intensive tasks while maintaining a low number of parallel

instances for those tasks which are mainly I/O bound.

The edges of the DAG represent the communication chan-

nels between the tasks, which are created by Nephele at

runtime. Through these communication channels the parallel

instances of a task can either consume incoming data from

their preceding tasks in the processing chain or forward data to

succeeding tasks. Currently, Nephele supports three different

types of channels: network, in-memory, and file channels. Each

channel operates on distinct data units, similar to the notion

of records discussed in Section II.

File channels store the data that is written to them either

on a local or a distributed file system. The data is not passed

on to the consuming task until the last piece of data has been

written by the producing task.

Network channels build upon regular TCP connections to

transport data. Data produced by one task is immediately

shipped to the consuming task. As a result of the network

connection, the producing and the consuming task can be

scheduled to run on different compute nodes.

In-memory channels exchange data through the compute

nodes’ main memory. Unlike network or file channels, in-

memory channels do not have to convert between the object

and the byte-stream representation of the records they transport

because only references to the data are transported through

the channels. Consequently, in-memory channels achieve a

substantially higher throughput in terms of records per second

than network channels. However, the producing and consum-

ing tasks are required to run on the same compute nodes and

even within the same operating system processes.
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A more thorough discussion of Nephele, in particular in

terms of its scheduling capabilities, can be found in [9].

B. Profiling Nephele Jobs

A key requirement to apply the bottleneck detection algo-

rithm as described in Section IV is the ability to access the

state information of tasks and their communication channels at

runtime, since these values are the foundation for implement-

ing the utilization functions pt(v) and st(e). This process is

referred to as job profiling.

On an operating system level collecting data about the CPU

utilization of individual processes is easy. Under Linux, e.g.,

the /proc/ interfaces offer detailed and easily accessible

statistics on the individual operating system processes.

However, in order to facilitate fast memory-based com-

munication between two tasks Nephele cannot always map

different tasks to different operating system processes. Instead,

the usage of in-memory channels forces Nephele to instantiate

different tasks as different threads within the same process.

With respect to collecting the profiling information this means

that we also have to be able to monitor the CPU utilization of

individual threads. Since most parts of Nephele are written in

Java, there are several different options to achieve this goal.

Our first profiling approach was based on the Java Virtual

Machine Tool Interface (JVMTI). JVMTI provides access to

the internal state of the Java Virtual Machine (JVM). It allows

writing so-called agents in a native language like C or C++, so

unlike Java itself the profiling extension is platform dependent.

The agent is then executed in the same process as the JVM

and is notified about occurring events via callback functions.

Our second profiling approach relied on the Java Man-

agement Extension (JMX). JMX comprises the MXBeans

platform package which provides access to, among other

things, the JVM’s runtime, thread and memory subsystem. In

particular, we used the class ThreadMXBean to determine

the CPU time of individual threads.

In order to evaluate the impact of both profiling approaches

on the actual task execution, we implemented both approaches

and devised a CPU-intensive sample job. We executed the

sample job several times without the profiling component as

well as with the JVMTI or JMX-based profiling component

enabled. Each version of the profiling component queried

the information on the CPU utilization of the monitored

task thread every second. The results of the comparison are

depicted in Figure 2.

Without profiling the mean execution time was around 82
seconds. The JMX-based profiling component proved to be

very lightweight. It only increased the mean execution time by

less than 1%. In contrast to that, the JVMTI-based component

led to a significant drop in execution speed. On average the

tasks’ completion time was increased by almost 74%. A closer

examination revealed that the frequent calls of the native agent

code were the main reason for the performance penalty.

As a result of the first performance evaluation, we imple-

mented the functions pt(v) and st(e) based on the lightweight

JMX approach. In order to generate the values of pt(v) we

query the JMX interface every 5 seconds for statistics on every
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Fig. 2. Profiling overhead using the JVMTI- and JMX-based approach

task thread. The statistics let us derive detailed information on

the distribution of the thread’s CPU time among the different

internal states of the JVM. These internal states are:

• USR: The amount of time the monitored task thread was

executed in user mode.

• SYS: The amount of time the monitored task thread was

executed in system mode.

• BLK: The amount of time the monitored task thread was

blocked because of mutual exclusion.

• WAIT: The amount of time the monitored task thread

was intentionally instructed to wait.

Since the threads of Nephele tasks only enter the WAIT state

as a result of congested or starved communication channels,

we can map this state directly to the WAITING state of

our bottleneck algorithm. The other three internal JVM states

(USR, SYS, BLK) are mapped to the PROCESSING state.

This also complies with Assumption 5 of Section II.

In order to determine the utilization of communication

channels, we simply store a timestamp for the respective

channel whenever a task thread either attempts to read from

or write to the channel and the attempt leads to the task

thread switching its state from PROCESSING to WAITING.

Moreover, we store a timestamp whenever new incoming data

from the considered channel or the completed transmission of

outgoing data allow the task to switch from state WAITING

back to the state PROCESSING (cf. Assumption 5). Based on

these timestamps we can then calculate how much time the

channel spent in the states SATURATED and READY.

After having calculated the utilization statistics for each

task instance locally at the respective Task Managers, the

profiling data is forwarded to Nephele’s central management

component, the Job Manager. The Job Manager then calculates

an arithmetic mean of the individual task instance statistics.

During the experiments on our mid-size cloud testbed, the

amount of data that was generated by our profiling subsystem

was negligibly small and did not account for any observable
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load on the Job Manager. In larger setups, when scalability

might become a bigger concern, the profiling overhead can be

reduced by increasing the reporting interval.

C. Graphical Representation of Bottlenecks

In order to inform the job’s developer about detected

bottlenecks at execution time we devised a special GUI for

Nephele, which is depicted in Figure 3. The GUI contacts

the Job Manager through an RPC interface to receive recent

profiling information about currently executed jobs and the

compute nodes involved in the execution.

For each job the GUI displays detailed information on each

of the job’s individual tasks and, assuming a task is executed

in parallel, the task instances. Developers can examine the uti-

lization of each task instance and its communication channels

in a chronological sequence and thereby track down problems

with regard to workload distribution. Tasks or communication

channels which are considered CPU or I/O bottlenecks respec-

tively are visually highlighted.

The feedback about the utilization of a job’s individual

tasks is complemented by a graphical presentation of the

compute nodes which are involved in executing the respective

job. Here the developer can examine charts about the CPU,

memory, and network utilization of individual nodes or view

summary charts which display the average utilization of all

those compute nodes.

VI. EVALUATION

In this section we want to evaluate the usefulness of our

bottleneck detection approach with the help of a concrete

use case. The use case we consider picks up the idea from

the introduction of this paper: A developer intends to use an

IaaS cloud like Amazon EC2 to repeatedly run an MTC-like

processing job. The job consists of several individual tasks

that interact with each other. The developer strives to finish the

processing job as fast as possible without paying for unutilized

compute resources.

A. Evaluation Use Case

The job we devised for our use case is inspired by the

famous Hadoop job of the New York Times, which was used

to convert their 4 TB large article archive from TIFF images

to PDF using 100 virtual machines on EC2 [10].

In our case the conversion job consists of six distinct tasks as

depicted in Figure 4. The first task, File Reader, initially reads

the individual image files from disk and sends each image as

a separate record to the second task, OCR Task. The OCR

Task then applies a text recognition algorithm to the received

image. The result of the text recognition, a regular string,

is then processed in a twofold manner. First, the recognized

text pattern of the image is passed to the task PDF Creator.

Second, each word within the text pattern is forwarded to a

task Inverted Index Task together with the name of the original

image file.

The task PDF Creator receives the recognized text pattern

of each original image as a separate record. The text pattern is
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Fig. 4. The Nephele job used for the evaluation

then converted to a PDF document and emitted to the task PDF
Writer, which eventually writes the received PDF document

back to disk.

The Inverted Index Task receives tuples of words from

the recognized text patterns and the names of the originating

image files. As its name implies, the task uses the received

tuples to construct an inverted index. This inverted index can

later be used to facilitate a keyword search on the created

PDF file set. In our evaluation the created index has been

small enough to fit into the node’s main memory. After having

received all input tuples, the task sends out tuples of each

indexed word together with a list of filenames in which the

word occurs to the task Inverted Index Writer. Inverted Index

Writer then writes the received tuples back to disk.

Conceptually, the processing job is interesting because the

tasks OCR Task, PDF Creator, and Inverted Index Task sug-

gest having different computational complexities. In order to

achieve a busy processing pipeline together with an economic

job execution on the cloud, each task’s degree of paralleliza-

tion must be carefully balanced with respect to the other task.

Since many IaaS providers offer their virtual machines with

ephemeral storage, i.e. it is not possible to store data inside

the virtual machine beyond its termination, we assume the

set of images we use as input data is stored on a persistent

storage service similar to Amazon Elastic Block Storage [11].

Right before the start of the processing job the storage service

is mounted inside one particular virtual machine. This virtual

machine then executes the tasks File Reader, PDF Writer, and

Inverted Index Writer, so the input and output data is directly

read or written from/to the storage service. The remaining

tasks are executed on other virtual machines inside the cloud.

Our overall goal is to find the largest possible scale-out of the

job with high resource utilization before the virtual machine

serving the input data becomes an insuperable I/O bottleneck.

B. Evaluation Setup

The evaluation experiments were conducted on our local

compute cloud of commodity servers. Each server is equipped

with two Intel Xeon E5430 2.66 GHz CPUs (type E5430, 4
CPU cores each) and a total main memory of 32 GB. All

servers are connected through regular 1 GBit/s Ethernet links.

As host operating system we installed Gentoo Linux (kernel
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Fig. 3. Nephele’s job visualization displaying the live profiling information and highlighting a CPU bottleneck

version 2.6.32) with KVM [12] (version 0.12.5) and used

virtio [13] to provide virtual I/O access.

In order to provision virtual machines we used the Eucalyp-

tus cloud system [14]. Each parallel instance of the tasks OCR

Task, PDF Creator, and Inverted Index Task has been executed

on a separate virtual machine with one CPU core, 2 GB of

main memory and 60 GB disk space. Amazon EC2 offers

virtual machines with comparable characteristics (except for

the disk space) at a price of approximately 0.10 USD per hour.

Each virtual machine booted a standard Ubuntu Linux image

(kernel version 2.6.31) with no additional software but a Java

runtime environment (version 1.6.0 20), which is required by

Nephele’s Task Manager. Throughout the entire evaluation all

tasks were connected via Nephele’s network channels.

The input data set for the sample job consisted of 4000
bitmap files. Each bitmap file contained a regular page of

single-column text and had a size of approximately 10 MB.

As a result, the overall size of the input data set was 40 GB.

The PDF documents were created using the iText li-

brary [15]. To mimic the persistent storage service mentioned

in the use case we set up a regular NFS server. The server has

been connected with 1 GBit/s to the rest of the network.

C. Evaluation Results

The results of our evaluation are depicted in Figure 5. The

figure shows selected runs of our sample job with different

degrees of parallelization. For each of those runs we depict

the average CPU utilization of all compute nodes involved in

the execution over the time. The CPU utilization was captured

by successively querying the /proc/stat interface on each

node and then sending the obtained values to Nephele’s Job

Manager to compute the global average for the respective point

in time. Besides the CPU utilization chart, we illustrate the

respective CPU or I/O bottlenecks which have been reported

by our bottleneck detection algorithm in the course of the

processing. Boxes with shaded areas refer to CPU bottlenecks

while boxes with solid areas refer to I/O bottlenecks at the

outgoing communication channels.

Figure 5 a) depicts the first of our evaluation runs. As a

first approach we used a parallelization level of 1 for all the

six tasks of the sample job. As a result, the job execution

comprised four virtual machine with the File Reader, the PDF

Writer and the Inverted Index Writer running on one virtual

machine and the OCR Task, the PDF Creator and the Inverted

Index Task each running on a separate virtual machine.

The processing time of the job was about 5 hours and

10 minutes. In the entire processing period the average CPU
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Fig. 5. Avg. CPU utilization and detected bottlenecks (shaded areas are CPU bottlenecks, solid areas are I/O bottlenecks) for different scale-outs

utilization ranged between 30% and 40%. The reason for this

poor resource utilization becomes apparent when looking at

the bottleneck chart for the run. Almost the entire time the

OCR Task has been identified as a CPU bottleneck by our

bottleneck detection algorithm.

As a response to the observation of the first run, we followed

the strategy to first improve the average CPU utilization

by balancing the individual tasks’ degree of parallelization

according to their relative complexity. After having determined

a reasonable parallelization ratio among the tasks we began

to scale out. This approach requires that the computational

characteristics of a task are independent of its level of paral-

lelization (cf. Assumption 7).

We continuously increased the degree of parallelization for

the OCR task and reexecuted the job. The average CPU

utilization continued to improve up to the point where the

OCR task had 4 parallel instances (see Figure 5 b)). Up to

level 3 the OCR task remained the permanent CPU bottleneck.

However, at parallelization level 4, the PDF Creator task

became the dominant bottleneck. In this configuration, with

7 virtual machines, the overall processing time had decreased

to 1 hour and 15 minutes while the average CPU utilization

had climbed up to approximately 70% throughout the entire

execution time. Note that we did not have to wait for the

intermediate runs to complete in order to deduce the final

parallelization ratio between the OCR and the PDF Creator

task. Since we knew the computational characteristics of

both tasks would not change during the processing time, it

was sufficient to observe only several seconds of each run

and then to proceed to the next level of parallelization. For

jobs consisting of several distinct processing phases, which

interrupt the processing pipeline, a longer observation might

be necessary.

After having done the initial balancing we began to scale out

both the OCR and the PDF Creator task at a ratio of 4 to 1. In

a configuration with 16 parallel instances of the OCR Task and

4 parallel instance of the PDF Creator task (see Figure 5 c))

we again encountered a change in the bottleneck situation. We

witnessed frequent changes between the PDF Creator task as

a CPU bottleneck and the communication channels of the File

Reader task as an I/O bottleneck. The changes were caused

by Nephele’s internal buffer strategy for network channels. In

order to achieve a reasonable TCP throughput, data is shipped

in blocks of at least 16 KB size. The text patterns recognized

by the parallel instances of the OCR Task had an average size

of about 4 KB, so the text pattern sometimes arrived at the

parallel instances of the PDF Creator task in batch and caused

a temporary CPU bottleneck.

However, despite the frequent changes, the bottleneck bars

in the diagram also indicate that the communication edge

between the File Reader task and the OCR Task has essentially

become an I/O bottleneck which renders further parallelization

of successive tasks unnecessary. This is confirmed by our final

run depicted in Figure 5 d). After adding another parallel

instance to the PDF Creator task we observed the commu-

nication channel between the File Reader and OCR Task to

be a permanent I/O bottleneck.

Interestingly, the Inverted Index Task had no significant

effect on the job execution. In comparison to the OCR Task

and the PDF Creator task its computational complexity turned

out to be too low. Moreover, the 4000 documents we used to

populate the index only accounted for a memory consumption

of a few MB. The channel congestion which may have

occurred when transferring the index to the Inverted Index

Writer task was too short to be detected by our system.

In sum, we think the evaluation provides a good example
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for the usefulness of our bottleneck detection approach. The

initial job execution without parallelization (Figure 5 a)) took

over 5 hours on 4 virtual machines to complete. Assuming an

hourly cost of 0.10 USD per virtual machine, this amounts

to a processing cost of 2.40 USD. Through the assistance

of our bottleneck detection algorithm we could follow spe-

cific indications to scale out our sample job according to

the complexity of each individual task. Although the final

evaluation run (Figure 5 d)) spanned 23 virtual machines,

the job already finished after approximately 24 minutes. This

marks a comparable processing cost, however, at considerably

savings in processing time.

VII. RELATED WORK

Performance analysis and bottleneck detection can be con-

ducted on three different levels of abstraction.

The lowest level of abstraction addresses the profiling of

distributed applications (VampirTrace, TAU, KOJAK, Para-

dyn, and others). This covers the instrumentation of code

or capturing of messages in order to record events as well

as timestamps of events. This generates very detailed insight

into the performance of an application but is very difficult to

translate into useful knowledge about performance bottlenecks

due to the sheer amounts of data produced.

In order to assist the developer at the discovery of bot-

tlenecks, the middle level of abstraction assumes the use

of a certain programming paradigm such as Map/Reduce,

Master/Worker, pipelined execution, etc. that is enriched with

user-contributed code. A framework for the programming

paradigm can define measurement points from which metrics

can be derived that hint to specific performance issues in the

user code or the degree of scale-out [16], [17].

The highest level of abstraction does not require knowledge

of a specific programming paradigm but rather considers the

parallel application as a whole with a generic performance

indicator like e.g. a service response time or other Service

Level Objectives of an n-tier system [18], [19], [20].

Espinosa et al. present in [21] a generic classification

of causes for performance bottlenecks in parallel execution

environments. This comprises slow communication, blocked

sender, multiple output problem (one sender communicating

with several receivers requires serial sending of message), lack

of parallelization, and problems at a barrier. Many of these

problems can be addressed at a framework level that realizes

a scalable parallel programming paradigm, such that users of

the framework do not need to worry about these details. Yet,

parallel environments rarely achieve linear scaling such that

they need to decide which components to scale out and to

which degree they shall be scaled out. This is addressed e.g.

by the following papers.

Li and Malony describe in [17] a performance tuning tool

that operates in several phases. The parallel program to be

tuned is instrumented and profiled by their TAU profiler. The

recorded events are then aligned and matched to an abstract de-

scription of the communication patterns of the Master/Worker

paradigm. Based on this alignment it is possible to create

a performance model which defines e.g. the time between

receiving a task and sending the result as the computation

time. By this, several metrics can be defined (e.g. computation

time) and derived (e.g. worker efficiency). These metrics are

then passed into a rule system that infers the causes for bad

performance and presents them to the user.

The related problem of scheduling pipelined workflows on

a static set of compute resources has been thoroughly studied

over the past decades. Many approaches in this area consider

more restricted workflow topologies such as linear chains

instead of DAGs (e.g. [22]). Additionally, the most common

optimization objectives are throughput and/or latency given a

fixed set of compute resources. In [23] Vydyanathan et al.

present a heuristic that uses estimations of processing and

transfer times of data items to schedule a DAG-shaped work-

flow on a fixed set of homogeneous processors in a latency-

optimal manner, while satisfying throughput requirements. In

contrast to this work, our approach strives to maximize the

system utilization on a variable set of compute resources.

Benoit et al. present in [16] a model for pipeline applications

in Grids. The pipeline model assumes a set of stages, each

of which consists of a data receiving, data processing and

data sending phase. Assuming a set of characteristics such

as latencies and compute power, the model is capable of sug-

gesting assignments of stages to processors. The model makes

several limiting assumptions that make it significantly more

restrictive than our approach. Such assumptions are e.g. that

each stage processes the same number of tasks. Furthermore

it does not discuss the core question addressed in this paper,

i.e. detecting bottlenecks in order to infer scaling strategies.

Cesar et al. describe in [24] comparable work on modeling

the master/worker paradigm and use this to find decisions on

the number of workers in a master/worker environment.

Malkowski et al. describe in [25] the detection of multi-

bottlenecks. The basic discovery is that n-tier systems can

suffer from increasing workload and show increasing response

times without having a single permanent bottleneck. The

declining performance can instead result from temporary bot-

tlenecks that are either oscillatory or concurrent on different

compute nodes. Histograms or kernel density estimation can

be used to visualize the distribution of degrees of utilization

of resources over time to indicate multi-bottlenecks.

Chanda et al. discuss in [26] how to provide end-to-

end profiles of transactions in multi-tier applications. They

consider applications in which client requests are processed by

a series of different stages. A stage may be a different process,

a thread, an event-handler, or a stage worker thread. Through

the algorithms and techniques introduced in their paper, the

authors are able to track client requests through each of these

stages and infer the amount of time the requests spend in them.

Apart from the field of distributed systems, bottleneck

detection also plays an important role in other practical areas

of computer science. E.g. in [27] Kannan et al. present an

approach to detect performance bottlenecks in Multi-Processor

System-on-a-Chip environments. Based on the idea of the

dynamic critical path [28], their work aims at identifying

components which contribute significantly to the end-to-end

computation delay.
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VIII. CONCLUSION

In this paper we presented an approach to detect bottlenecks

in parallel DAG-based data flow programs. The algorithm we

introduced is capable of detecting CPU as well as I/O bot-

tlenecks and therefore assists developers in finding reasonable

scale-outs for their jobs.

We introduced a simple processing model which abstracts

from the concrete compute resources and determines bottle-

necks solely through the relationship among the tasks. Based

on our processing framework Nephele we evaluated different

strategies to obtain the task characteristics required by our

model at runtime. A first evaluation of our work suggests that

already a small number of iterations is sufficient to discover

major performance bottlenecks and improve the levels of

parallelization for the tasks involved in a processing job.

For future work we can envision adapting the degree of

parallelization for the tasks of a processing job dynamically

at runtime. This would render the need of multiple iterations

of the same job superfluous. Furthermore, it would allow an

adaptive job optimization without any prior assumptions about

data distributions. Furthermore, the model can be extended by

memory bottlenecks and load balancing issues. A sufficiently

precise model might allow to determine an optimal degree of

scale-out for tasks after a single or very few profiling runs.
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