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ABSTRACT

Today, a growing number of commodity devices, like mobile
phones or smart meters, is equipped with rich sensors and
capable of producing continuous data streams. The sheer
amount of these devices and the resulting overall data vol-
umes of the streams raise new challenges with respect to the
scalability of existing stream processing systems.

At the same time, massively-parallel data processing sys-
tems like MapReduce have proven that they scale to large
numbers of nodes and efficiently organize data transfers be-
tween them. Many of these systems also provide stream-
ing capabilities. However, unlike traditional stream proces-
sors, these systems have disregarded QoS requirements of
prospective stream processing applications so far.

In this paper we address this gap. First, we analyze com-
mon design principles of today’s parallel data processing
frameworks and identify those principles that provide de-
grees of freedom in trading off the QoS goals latency and
throughput. Second, we propose a scheme which allows
these frameworks to detect violations of user-defined latency
constraints and optimize the job execution without manual
interaction in order to meet these constraints while keeping
the throughput as high as possible. As a proof of concept, we
implemented our approach for our parallel data processing
framework Nephele and evaluated its effectiveness through
a comparison with Hadoop Online.

For a multimedia streaming application we can demon-
strate an improved processing latency by factor of at least
15 while preserving high data throughput when needed.

Categories and Subject Descriptors

H.2.4 [Systems]|: Parallel databases; C.2.4 [Distributed
Systems]: Distributed applications
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1. INTRODUCTION

In the course of the last decade, science and the I'T indus-
try have witnessed an unparalleled increase of data. While
the traditional way of creating data on the Internet allowed
companies to lazily crawl websites or related data sources,
store the data on massive arrays of hard disks, and process
it in a batch-style fashion, recent hardware developments
for mobile and embedded devices together with ubiquitous
networking have also drawn attention to streamed data.

Streamed data can originate from various different sources.
Every modern smartphone is equipped with a variety of sen-
sors, capable of producing rich media streams of video, au-
dio, and possibly GPS data. Moreover, the number of de-
ployed sensor networks is steadily increasing, enabling inno-
vations in several fields of life, for example energy consump-
tion, traffic regulation, or e-health. However, a crucial pre-
requisite to leverage those innovations is the ability to pro-
cess and analyze a large number of individual data streams
in a near-real-time manner. As motivation, we would like to
illustrate two emerging scenarios:

e Live Media Streaming: Today, virtually all smart
phones can produce live video streams. Several web-
sites like Livestream' or Ustream?® have already re-
sponded to that development, offering their users to
produce and broadcast live media content to a large
audience in a way that has been reserved to major
television networks before. Recently, we have seen first
steps towards this “citizen journalism” during the po-
litical incidents in the Middle East or the “Occupy Wall
Street” movement. However, at the moment, the capa-
bilities of those live broadcasting services are limited
to media transcoding and simple picture overlays. Al-
though the content of two different streams may over-
lap to a great extent (for example because the peo-
ple filming the scene are standing close to each other),

http://www.livestream. com/
Zhttp://www.ustream.tv/



they are currently processed completely independent of
each other. In contrast to that, future services might
also offer to automatically aggregate and relate streams
from different sources, thereby creating a more com-
plete picture and eventually better coverage for the
viewers.

e Energy informatics: Smart meters are currently be-
ing deployed in growing numbers at consumer homes
by power utilities. Smart meters are networked de-
vices that monitor a household’s power consumption
and report it back to the power utility. On the utility’s
side, having such near-real-time data about power con-
sumption is a key aspect of managing fluctuations in
the power grid’s load. Such fluctuations are introduced
not only by consumers but also by the increasing, long-
term integration of renewable energy sources. Data an-
alytics applications that are hooked into the live meter
data stream can be used for many operational aspects
such as monitoring the grid infrastructure for equip-
ment limits, initiating autonomous control actions to
deal with component failures, voltage sags/spikes, and
forecasting power usage. Especially in the case of au-
tonomous control actions, the freshness of the data
that is being acted upon is of paramount importance.

Opportunities to harvest the new data sources in the vari-
ous domains are plentiful. However, the sheer amount of in-
coming data that must be processed online also raises scala-
bility concerns with regard to existing solutions. As opposed
to systems working with batch-style workloads, stream pro-
cessing systems must often meet particular Quality of Ser-
vice (QoS) goals, otherwise the quality of the processing
output degrades or the output becomes worthless at all. Ex-
isting stream processors [1, 2] have put much emphasis on
meeting provided QoS goals of applications, though often at
the expense of scalability or a loss of generality [17].

In terms of scalability and programming generality, the
predominant workhorses for data-intensive workloads at the
moment are massively-parallel data processing frameworks
like MapReduce [12] or Dryad [14]. By design, these systems
scale to large numbers of compute nodes and are capable of
efficiently transferring large amounts of data between them.
Many of the newer systems [8, 11, 14, 16, 18] also allow to
assemble complex parallel data flow graphs and to construct
pipelines between the individual parts of the flow. There-
fore, these systems generally are also suitable for streaming
applications. However, so far they have concentrated on few
streaming application, like online aggregation or “early out”
computations [11], and have not considered QoS goals.

This paper attempts to bridge that gap. We have analyzed
a series of open-source frameworks for parallel data process-
ing and highlight common design principles they share to
achieve scalability and high data throughput. We show how
some aspects of these design principles can be used to trade
off the QoS goals latency and throughput in a fine-grained
per-task manner and propose a scheme to automatically do
so during the job execution based on user-defined latency
constraints. Starting from the assumption that high data
throughput is desired, our scheme monitors potential latency
constraint violations at runtime and can then gradually ap-
plies two techniques, adaptive output buffer sizing and dy-
namic task chaining, to met the constraints while maintain-
ing high throughput as far as possible. As a proof of concept,

we implemented the scheme for our data processing frame-
work Nephele and evaluated their effectiveness through a
comparison with Hadoop Online.

The rest of this paper is structured as follows: In Sec-
tion 2 we examine the common design principles of today’s
massively-parallel data processing frameworks and discuss
the implications of meeting the aforementioned QoS con-
straints. Section 3 presents our scheme to dynamically adapt
to the user-defined latency constraints, whereas Section 4
contains an experimental evaluation. Section 5 provides a
brief overview of current stream and parallel data proces-
sors. Finally, we conclude our paper in Section 6.

2. MASSIVELY-PARALLEL DATA PROCESS-

ING AND STREAMED DATA

In recent years, a variety of frameworks for massively-
parallel data analysis has emerged [8, 11, 12, 14, 16, 18].
Many of them are open-source software. Having analyzed
their internal structure, we found they often follow similar
design principles to achieve scalability and high throughput.

This section highlights those principals and discuss their
implications on stream processing under QoS constraints.

2.1 Design Principles of Parallel Data Process-
ing Frameworks

Frameworks for parallel data processing typically follow
a master-worker pattern. The master node receives jobs
from the user, splits them into sets of individual tasks, and
schedules those tasks to run on the available worker nodes.

The structure of those jobs can usually be described by
a graph with vertices representing the job’s individual tasks
and the edges denoting communication channels between
them. For example, from a high-level perspective, the graph
representation of a typical MapReduce job would consist of
a set of Map vertices connected via edges to a set of Reduce
vertices. Some frameworks have generalized the MapReduce
model to arbitrary directed acyclic graphs (DAGs) [8, 14,
18], some even allow graph structures containing loops [16].

However, independent of the concrete graph model used to
describe jobs for the respective framework, the way both the
vertices and edges translate to system resources at runtime
is surprisingly similar among all of these systems.

Each task vertex of the overall job typically translates
to either a separate process or a separate thread at runtime.
Considering the large number of CPUs (or CPU cores) these
frameworks must scale up to, this is a reasonable design de-
cision. By assigning each task to a different thread/process,
those tasks can be executed independently and utilize a sepa-
rate CPU core. Moreover, it gives the underlying operating
system various degrees of freedom in scheduling the tasks
among the individual CPU cores. For example, if a task
cannot fully utilize its assigned CPU resources or is waiting
for an I/O operation to complete, the operating system can
assign the idle CPU time to a different thread/process.

The communication model of massively-parallel data pro-
cessing systems typically follows a producer-consumer pat-
tern. Tasks can produce a sequence of data items which are
then passed to and consumed by their successor tasks ac-
cording to the edges of the job’s graph representation. The
way the data items are physically transported from one task
to the other depends on the concrete framework. In the most
lightweight case, two tasks are represented as two different
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Figure 1: Typical processing pattern of frameworks for massively-parallel data analysis

threads running inside the same operating system process
and can use shared memory to exchange data. If tasks are
mapped to different processes, possibly running on differ-
ent worker nodes, the data items are typically exchanged
through files or a network connection.

However, since all of these frameworks have been designed
for data-intensive workloads and hence strive for high data
throughput, they attempt to minimize the transfer overhead
per data item. As a result, these frameworks try to avoid
shipping individual data items from one task to the other.
As illustrated in Figure 1, the data items produced by a task
are typically collected in a larger output buffer. Once its
capacity limit has been reached, the entire buffer is shipped
to the receiving task and in many cases placed in its input
buffer queue, waiting to be consumed.

2.2 Implications for QoS-Constrained Stream-
ing Applications
Having highlighted some basic design principles of today’s
parallel data processing frameworks, we now discuss which
aspects of those principles provide degrees of freedom in
trading off the different QoS goals latency and throughput.

2.2.1 The Role of the Output Buffer

As explained previously, most frameworks for parallel data
processing introduce distinct output buffers to minimize the
transfer overhead per data item and improve the data item
throughput, i.e. the average number of items that can be
shipped from one task to the other in a given time interval.

For the vast majority of data processing frameworks we
have analyzed in the scope of our research, the output buffer
size could be set on a system level, i.e. all jobs of the respec-
tive framework instance were forced to use the same output
buffer sizes. Some frameworks also allowed to set the output
buffer size per job, for example Apache Hadoop®. Typical
sizes of these output buffers range from several MB to 4 or
8 KB, depending on the focus of the framework.

While output buffers play an important role in achieving
high data throughput, they also make it hard to optimize
jobs for current parallel data processors towards the QoS
goal latency. Since an output buffer is typically not shipped
until it has reached its capacity limit, the latency an indi-
vidual data item experiences depends on the system load.

In order to illustrate this effect, we created a small sample
job consisting of two tasks, a sender task and a receiver task.
The sender created data items of 128 bytes length at a fixed

3http://hadoop.apache.org/

rate n and wrote them to an output buffer of a fixed size.
Once an output buffer had reached its capacity limit, it was
sent to the receiver through a TCP connection. We ran the
job several times. Between each run, we varied the output
buffer size.

The results of this initial experiment are depicted in Fig-
ure 2. As illustrated in Figure 2(a), the average latency
from the creation of a data item at the sender until its ar-
rival at the receiver depends heavily on the creation rate and
the size of the output buffer. With only one created data
item per second and an output buffer size of 64 KB, it takes
more than 222 seconds on an average before an item arrives
at the receiver. At low data creation rates, the size of the
output buffer has a significant effect on the latency. The
more the data creation rate increases, the more the latency
converges towards a lower bound. At a rate of 10® created
items per second, we measured an average data item latency
of approximately 50 milliseconds (ms), independent of the
output buffer size.

As a baseline experiment, we also executed separate runs
of the sample job which involved flushing incomplete output
buffers. Flushing forced the system to transfer the output
buffer to the receiver after each written data item. As a
result, the average data item latency was uniformly 38 ms,
independent of the data creation rate.

Figure 2(b) shows the effects of the different data creation
rates and output buffer sizes on the throughput of the sample
job. While the QoS objective latency suggests using small
output buffers or even flushing incomplete buffers, these ac-
tions show a detrimental effect when high data throughput is
desired. As depicted in Figure 2(b), the data item through-
put that could be achieved grew with the size of the output
buffer. With relatively big output buffers of 64 or 32 KB
in size, we were able to fully saturate the 1 GBit/s network
link between the sender and the receiver, given a sufficiently
high data creation rate. However, the small output buffers
failed to achieve a reasonable data item throughput. In the
most extreme case, i.e. flushing the output buffer after ev-
ery written data item, we were unable to attain a data item
throughput of more than 10 MBit/s. The reason for this is
the disproportionally high transfer overhead per data item
(output buffer meta data, memory management, thread syn-
chronization) that massively-parallel data processing frame-
works in general are not designed for. Similar behavior is
known from the TCP networking layer, where the Nagle
algorithm can be deactivated (TCP_NODELAY option) to
improve connection latency.
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Figure 2: The effect of different output buffer sizes on data item latency and throughput

In sum, the sample job highlights an interesting trade-
off that exists in current data processing frameworks with
respect to the output buffer size. While jobs with low la-
tency demands benefit from small output buffers, the classic
data-intensive workloads still require relatively large output
buffers in order to achieve high data throughput. This trade-
off puts the user in charge of configuring a reasonable output
buffer size for his job and assumes that (a) the used process-
ing framework allows him to specify the output buffer size
on a per-job basis, (b) he can estimate the expected load
his job will experience, and (c) the expected load does not
change over time. In practice, however, at least one of those
three assumptions often does not hold. One might also ar-
gue that there is no single reasonable output buffer size for
an entire job as the job consists of different tasks that pro-
duce varying data item sizes at varying rates, so that any
chosen fixed output buffer size can only result in acceptable
latencies for a fraction of the tasks but not for all of them.

2.2.2  The Role of the Thread/Process Model

Current frameworks for parallel data processing typically
map different tasks to different operating system processes
or at least different threads. While this facilitates natu-
ral scalability and load balancing between different CPUs
or CPU cores, it also raises the communication overhead
between tasks. In the most lightweight case, where differ-
ent tasks are mapped to different threads within the same
process and communication is performed via shared mem-
ory, the communication overhead typically only consists of
thread synchronization, scheduling, and managing cache con-
sistency issues. However, when the communicating tasks are
mapped to different processes or even worker nodes, pass-
ing data items between them additionally involves serial-
ization/deserialization and, depending on the way the data
is physically exchanged, writing the serialized data to the
network/file system and reading it back again.

Depending on the complexity of the tasks, the commu-
nication overhead can account for a significant fraction of
the overall processing time. If the tasks themselves are
lightweight, but the data items are rather large and com-
plex to serialize/deserialize (as in case of a filter operation

on a nested XML structure [4]), the overhead can limit the
throughput and impose a considerable processing latency.
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Figure 3: Different execution models with and with-
out task chaining

As illustrated in Figure 3, a common approach to address
this form of communication overhead is to chain lightweight
tasks together and execute them in a single thread/process.
The most popular example in the area of parallel data pro-
cessing is probably the chained map functions from Apache
Hadoop. However, a similar idea was also described earlier
as rewriting a program to its “normal form” by Aldinucci and
Danelutto [3] in the context of stream parallel skeletons.

Before starting a Hadoop job, a user can specify a series of
map functions to be chained. Hadoop will then execute these
functions in a single process. Chaining tasks often also elim-
inates the need for separate output buffers. For example, in
case of Hadoop’s chained map functions, the user code of the
next map function in the processing chain can be directly
invoked on the previous map function’s output. Depending
on the semantics of the concatenated tasks, chaining may
also render the serialization/deserialization between tasks
superfluous. If the chained tasks are stateless (as typically



expected from map functions in Hadoop), it is safe to pass
the data items from one task to the other by reference.

With regard to stream processing, chaining tasks offers
an interesting approach to reduce processing latency and
increase throughput at the same time. However, similar to
the output buffer size, there might also be an important
trade-off, especially when the job’s workload is unknown in
advance or is likely to change over time.

In its current form, task chaining is performed at compile
time, so once the job is running, all chained tasks are bound
to a single execution thread. In situations with low load,
this might be beneficial since communication overhead is
decreased and potential throughput and latency goals can
be met more easily. However, when the load increases in the
course of the job processing, the static chaining prevents
the underlying operating system from distributing the tasks
across several CPU cores. As a result, task chaining can also
be disadvantageous if (a) the complexity of the chained tasks
is unknown in advance or (b) the workload the streaming job
has to handle is unknown or changes over time.

3. AUTOMATIC QOS-OPTIMIZATION FOR
STREAMING APPLICATIONS

Currently, it is the user of a particular framework who
must estimate the effects of the configured buffer size and
thread/process model on a a job’s latency and throughput
characteristics in a cumbersome and inaccurate manner.

In the following, we propose an extension to parallel data
processing frameworks which spares the user this hassle.
Starting from the assumption that high throughput contin-
ues to be the predominant QoS goal in parallel data pro-
cessing, our extension lets users add latency constraints to
their job specifications. Based on these constraints, it con-
tinuously monitors the job execution and detects violations
of the provided latency constraints at runtime. Our exten-
sion can then selectively trade high data throughput for a
lower processing latency using two distinct strategies, adap-
tive output buffer sizing and dynamic task chaining.

As a proof of concept, we implemented this extension
as part of our massively-parallel data processing framework
Nephele [18] which runs data analysis jobs based on DAGs.
However, based on the common principles identified in the
previous section, we argue that similar strategies are appli-
cable to other frameworks as well.

3.1 Specifying Latency Constraints

For the remainder of the paper, we will assume a DAG
G = (Vg, Eg) as the underlying structure of a job. At run-
time each vertex v € Vi is a a task containing user code.
The directed edge e = (v1,v2) € E¢ is a channel along which
the task v; can send data items of arbitrary size to task vs.

In order to specify latency constraints, a user must be
aware how much latency his application can tolerate in or-
der to still be useful. With his knowledge from the appli-
cation domain a user should then identify latency critical
sequences of tasks and channels within the DAG for which
he can express required upper latency bounds in the form
of constraints. These constraints are part of the job descrip-
tion and provide information to the framework about where
optimizations are necessary.

In the following, we will formally distinguish between task,

channel, and sequence latency, based on which latency con-
straints can then be expressed.

3.1.1 Task Latency

Given a task v;, an incoming channel e;, = (vsz,v;) and
an outgoing channel eou: = (vi, vy), we shall define the task
latency tl(d, v;, vz—vy) as the time difference between a data
item d entering the user code of v; via the channel e;,, and
the next data item exiting the user code via eoyt.

This definition has several implications. First, task la-
tency is undefined on source and sink tasks as these task
types lack incoming and, respectively, outgoing channels.
Task latencies can be infinite if the task never emits for cer-
tain in/out channel combinations. Moreover, task latency
can vary significantly between subsequent items, for exam-
ple, if the task reads two items but emits only one item after
it has read the last one of the two. In this case the first item
will have experienced a higher task latency than the second
one.

3.1.2 Channel Latency

Given two tasks v;,v; € V connected via channel e =
(vi,v;) € Eq, we define the channel latency cl(d,e) as the
time difference between the data item d exiting the user code
of v; and entering the user code of v;. The channel latency
may also vary significantly between data items on the same
channel due to differences in item size, output buffer utiliza-
tion, network congestion, and the length of the input queues
that need to be transited on the way to the receiving task.

3.1.3 Sequence Latency

Sequences are series of of connected tasks and channels
and thus should be used to identify the parts of the DAG
for which the application has latency requirements. Let us
assume a sequence S = ($1,...,8n), n > 1 of connected
tasks and channels. The first element of the sequence is
allowed to be either a task or a channel. For example, if s
is a task, then s; needs to be an incoming and sz an outgoing
channel of the task. If a data item d enters the sequence S,
we can define the sequence latency sl(d,S) that the item d
experiences as sl*(d, S,1) where

ifi<n
ifi=n

(4,5, = {z(d, si) + sl (si(d), S,i + 1)
If s; is a task, then I(d,s;) is equal to the task latency
tl(d, s;, vs—vy) and s;(d) is the next data item produced by
s; to be shipped via the channel (s;,vy). If s; is a channel,
then I(d, s;) is the channel latency cl(d, s;) and s;(d) = d.

3.1.4 Latency Constraints

When the user has identified latency critical sequences
within the DAG, he can then express the maximum tolera-
ble latency on these sequences as a set of latency constraints
C ={c1,...,cn} to be attached to the job description. Each
constraint ¢; = (Si,ls;,t) defines a desired upper latency
limit s, for the arithmetic mean of the sequence latency
sl(d, S;) over all the data items d € D, that enter the se-
quence S; during any time span of ¢ time units:

ZdeDt sl(d, Si)
et < g, 1
Dy] <ls, (1)



Note that such a constraint does not specify a hard upper
latency bound for each single data item but only a “sta-
tistical” upper bound over the items running through the
workflow during the given time span. While hard upper
bounds may be desirable, we doubt that meaningful hard
upper bounds can be achieved in most real-world setups of
massively-parallel data processing frameworks.

3.2 Measuring Workflow Latency

In order to make informed decisions where to apply op-
timizations to a running workflow we designed and imple-
mented means of sampling and estimating the latency of a
sequence. The master node that has global knowledge about
the defined latency constraints will instruct the worker nodes
about where they have to perform latency measurements.
For the elements (task or channel) of each constrained se-
quence, latencies will be measured on the respective worker
node once during a configured time interval, the measure-
ment interval. This scheme can quickly produce high num-
bers of measurements with rising numbers of tasks and chan-
nels. For this reason we locally preaggregate measurement
data on the worker nodes and ship one message once every
measurement interval from the workers to the master. Each
message contains the following data:

1. An estimation of the average channel latency for each
locally incoming channel (i.e. it is an incoming chan-
nel on the worker node) of the constrained sequences.
The average latency of a channel is estimated using
tagged data items. A tag is a small piece of data that
contains a creation timestamp and a channel identifier
and it is added when a data item exits the user code of
the channel’s sender task and is evaluated just before
the data item enters the user code of the channel’s re-
ceiver task. The receiving worker node will then add
the measured latency to its aggregated measurement
data. The tagging frequency is chosen in such a way
that we have one tagged data item during each mea-
surement interval if there are any data flowing through
the channel. If the sending and receiving tasks are exe-
cuted on different worker nodes, clock synchronization
is required.

2. The average output buffer lifetime for each channel of
the constrained sequences, which is the average time it
took for output buffers to be filled. If no output buffer
was filled on the channel during the measurement in-
terval, this is indicated as such in the message.

3. An estimation of the average task latency for each task
of the constrained sequences. Task latencies are mea-
sured in an analogous way to channels, but here we do
not require tags. Once every measurement interval, a
task will note the difference in system time between
a data item entering the user code and the next data
item leaving it on the channels specified in the con-
strained sequences. Again, the measurement frequency
is chosen in a way that we have one latency measure-
ment during each measurement interval if there are any
data flowing through the channel.

Let us assume a constrained sequence S = (e1,v1,e2).
Tags will be added to the data items entering channel e;
once every measurement interval. Just before a tagged data
item enters the user code of v1, the tag is removed from the

data item and the difference between the tag’s timestamp
and the current system time is added to the locally aggre-
gated measurement data. Let us assume a latency measure-
ment is required for the task v; as well. In this case, just
before handing the data item to the task, the current sys-
tem time is stored in the task environment. The next time
the task outputs a data item to be sent to ez the difference
between the current system time and the stored timestamp
is again added to the locally aggregated measurement data.
Before handing the produced data item to the channel e,
the worker node may choose to tag it, depending on whether
we still need a latency measurement for this channel. Once
every measurement interval the worker nodes flush their ag-
gregated measurement data to the master node.

The master node stores the measurement data it receives
from the worker nodes. For each constraint (S;,ls;,t) € C,
it will keep all latency measurement data concerning the
elements of S; that are fresher than t time units and discard
all older measurement data. Then, for each element of S;, it
will compute a running average over the measurement values
and add the results up to an estimation of the left side of
Equation 1. The accuracy of this estimation depends mainly
on the chosen measurement interval.

The aforementioned output buffer lifetime measurements
are subjected to the same running average procedure. To
the running average of the output buffer lifetime of channel
e over the past ¢t time units we shall refer as oblt(e,t). Note
that the time individual data items spend in output buffers
is already contained in the channel latencies, hence we do
not need the output buffer lifetime to estimate sequence la-
tencies. It does however play the role of an indicator, when
trying to locate channels where the output buffer sizes can
be optimized (see Section 3.3).

The measurement overhead is quite low as only one mes-
sage from each of the workers to the master is required
during a measurement interval. Even for large numbers of
nodes, the collected data can be easily held in main memory
by the master node. If necessary, the number of messages
can be reduced by increasing the measurement interval.

3.3 Reacting to Latency Constraint Violations

Based on the measurement data as described in Section 3.2,
the master node can identify those sequences of the DAG
that violate their constraint and initiate countermeasures
to improve latency. It will apply countermeasures until the
constraint has been met or the necessary preconditions for
applying countermeasures are not met anymore. In this case
it will report the failed optimization attempt to the user who
then has to either change the job or revise the constraints.

Given a DAG G = (Vg, Eg), a sequence S = (s1,...,8n),
and a violated latency constraint (S, ls,t), the master node
attempts to eliminate the effect of improperly sized output
buffers by adjusting the buffer sizes for each channel in S
individually and apply dynamic task chaining to reduce la-
tencies further. Buffer size adjustment is an iterative process
which may increase or decrease buffer sizes at multiple chan-
nels, depending on the measured latencies. Note that after
each run of the buffer adjustment procedure the master node
waits until all latency measurement values based on the old
buffer sizes have been flushed out. The conditions and pro-
cedures for changing buffer sizes and dynamic task chaining
are outlined in the following sections.



3.3.1 Adaptive Output Buffer Sizing

For each channel e in S the master node compares the av-
erage output buffer latency obl(e,t) that data items on this
channel experience to the running average of the channel la-
tency. The average output buffer latency of a data item is
estimated as obl(e,t) = %(e’t), where oblt(e,t) is the run-
ning average of the output buffer lifetime (see Section 3.2).
If obl(e, t) supersedes both a certain minimum threshold (for
example 5 ms) and the task latency of the channel’s source
task, the master node sets the new output buffer size obs™(e)
to

obs™ () = mazx(e, obs(e) x r=1) (2)

where € > 0 is an absolute lower limit on the buffer size,
obs(e) is the current output buffer size, and 0 < r < 1.
We chose r = 0.98 and ¢ = 200 bytes as a default. This
approach might reduce the output buffer size so much that
most records do not fit inside the output buffer anymore,
which is detrimental to both throughput and latency. Hence,
if obl(e) ~ 0, we will increase the output buffer size to

obs™ (e) = min(w, s X obs(e)) 3)

where w > 0 is an upper bound for the buffer size and
s > 1. For our prototype we chose s = 1.1.

3.3.2  Dynamic Task Chaining

Task chaining pulls certain tasks into the same thread,
thus eliminating the need for queues and handing over data
items between these tasks. In order to be able to chain a
series of tasks v, ..., v, within the constrained sequence S
they need to fulfill the following conditions:

e They all run as separate threads with the same pro-
cess on the worker node, which excludes any already
chained tasks.

e The sum of the CPU utilizations of the task threads is
lower than the capacity of one CPU core or a fraction
thereof, for example 90% of a core. How such profiling
information can be obtained has been described in [7].

e They form a path through the DAG, i.e. each pair
Vi, Vi+1 € Vi is connected by a channel e = (vi, viy1) €
FE¢ in the DAG.

e None of the tasks has more than one incoming and
more than one outgoing channel, with the exception
of the first task v; which is allowed to have multiple
incoming channels and the last task v, which is allowed
to have multiple outgoing channels.

The master node looks for the longest chainable series of
tasks within the sequence. If it finds one, it instructs the
worker node to chain the respective tasks. When chaining
a series of tasks the worker node needs to take care of the
input queues between them. There are two principal ways of
doing this. The first one is to simply drop the existing input
queues between these tasks. Whether this is acceptable or
not depends on the nature of the workflow, for example in a
video stream scenario it is usually acceptable to drop some
frames. The second one is to halt the first task v; in the
series and wait until the input queues between all of the
subsequent tasks va, ..., v, in the chain have been drained.

This will temporarily increase the latency due to a growing
input queue of v; that needs to be reduced after the chain
has been established.

3.4 Relation to Fault Tolerance

In large clusters of compute nodes, individual nodes are
likely to fail [12]. Therefore, it is important to point out how
our proposed techniques to trade off high throughput against
low latency at runtime affect the fault tolerance capabilities
of current parallel data processing frameworks.

As these data processors mostly execute arbitrary black-
box user code, currently the predominant approach to guard
against execution failures is referred to as log-based rollback-
recovery in literature [13]. Besides sending the output buffers
with the individual data items from the producing to the
consuming task, the parallel processing frameworks addi-
tionally materialize these output buffers to a (distributed)
file system. As a result, if a task or an entire worker node
crashes, the data can be re-read from the file system and
fed back into the re-started tasks. The fault tolerance in
Nephele is also realized that way.

Our two proposed optimizations affect this type of fault
tolerance mechanism in different ways: Our first approach,
the adaptive output buffer sizing, is completely transparent
to a possible data materialization because it does not change
the framework’s internal processing chain for output buffers
but simply the size of these buffers. Therefore, if the parallel
processing framework wrote output buffers to disk before the
application of our optimization, it will continue to do so even
if adaptive output buffer sizing is in operation.

For our second optimization, the dynamic task chaining,
the situation is different. With dynamic task chaining ac-
tivated, the data items passed from one task to the other
no longer flow through the framework’s internal processing
chain. Instead, the task chaining deliberately bypasses this
processing chain to avoid serialization/deserialization over-
head and reduce latency. Possible materialization points
may therefore be incomplete and useless for a recovery.

We addressed this problem by introducing an additional
annotation to the Nephele job description which prevents
our system from applying dynamic task chaining on par-
ticular parts of the DAG. This way our streaming exten-
sion might lose one option to respond to violations of a pro-
vided latency goal, however, we are able to guarantee that
Nephele’s fault tolerance capabilities remain fully intact.

4. EVALUATION

Having presented both the adaptive output buffer sizing
and the dynamic task chaining for Nephele, we will now
evaluate their impact based on an example job. To put the
measured data into perspective, we also implemented the
example job for another parallel data processing framework
with streaming capabilities, namely Hadoop Online?.

We chose Hadoop Online as a baseline for comparison for
three reasons: First, Hadoop Online is open-source software
and was thus available for evaluation. Second, among all
large-scale data processing frameworks with streaming capa-
bilities, we think Hadoop Online currently enjoys the most
popularity in the scientific community, which also makes
it an interesting subject for comparison. Finally, in their
research paper, the authors describe the continuous query

“http://code.google.com/p/hop/
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Figure 4: Structure of the Nephele job

feature of their system to allow for near-real-time analysis
of data streams [11]. However, they do not provide any
numbers on the actually achievable processing latency. Our
experiments therefore also shed light on this question.

4.1 Job Description

The job we use for the evaluation is motivated by the “cit-
izen journalism” use case described in the introduction. We
consider a web platform which offers its users to broadcast
incoming video streams to a larger audience. However, in-
stead of simple video transcoding which is done by existing
video streaming platforms, our system additionally groups
related video streams, merges them to a single stream, and
augments the stream with additional information, such as
Twitter feeds or other social network content. The idea is
to provide the audience of the merged stream with a broader
view of a situation by automatically aggregating related in-
formation from various sources.

In the following we will describe the structure of the job,
first for Nephele and afterwards for Hadoop Online.

4.1.1 Structure of the Nephele Job

Figure 4 depicts the structure of the Nephele evaluation
job. The job consists of six distinct types of tasks. Each
type of task is executed with a degree of parallelism of m,
spread evenly across n compute nodes.

The first tasks are of type Partitioner. Each Partitioner
task acts as a TCP/IP server for incoming video feeds, re-
ceives H.264 encoded video streams, assigns them to a group
of streams and forwards the video stream data to the De-
coder task responsible for streams of the assigned group. In
the context of this evaluation job, we group video streams
by a simple attribute which we expect to be attached to the
stream as meta data, such as GPS coordinates. More so-
phisticated approaches to detect video stream correlations
are possible but beyond the scope of our evaluation.
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Figure 5: Structure of the Hadoop Online job

The Decoder tasks are in charge of decompressing the en-
coded video packets into distinct frames which can then be
manipulated later in the workflow. For the decoding process,
we rely on the xuggle library®.

Following the Decoder, the next type of tasks in the pro-
cessing pipeline are the Merger tasks. Merger tasks consume
frames from grouped video streams and merge the respective
set of frames to a single output frame. In our implementa-
tion the merge step simply consists of tiling the individual
input frames in the output frame.

After having merged the grouped input frames, the Merger
tasks send their output frames to the next task type in
the pipeline, the Overlay tasks. An Overlay task augments
the merged frames with information from additional related
sources. For the evaluation, we designed each Owerlay task
to draw a marquee of T'witter feeds inside the video stream,
which are picked based on locations close to the GPS coor-
dinates attached to the video stream.

The output frames of the Overlay tasks are encoded back
into the H.264 format by a set of Encoder tasks and then
passed on to tasks of type RTP Server. These tasks repre-
sent the sink of the streams in our workflow. Each task of
this type passes the incoming video streams on to an RTP
server which then offers the video to an interested audience.

4.1.2  Structure of the Hadoop Online Job

For Hadoop Online, the example job exhibits a similar
structure as for Nephele, however, the six distinct tasks have
been distributed among the map and reduce functions of
two individual MapReduce jobs. During the experiments on
Hadoop Online, we executed the exact same task code as for
Nephele apart from some additional wrapper classes we had
to write in order to achieve interface compatibility.

As illustrated in Figure 5 we inserted the initial Par-
titioner task into the map function of the first MapRe-

Shttp://www.xuggle.com/



duce job. Following the continuous query example from
the Hadoop Online website, the task basically “hijacks” the
map slot with an infinite loop and waits for incoming H.264
encoded video streams. Upon the reception of the stream
packet, the packet is put out with a new key, such that all
video streams within the same group will arrive at the same
parallel instance of the reducer. The reducer function then
accommodates the previously described Decoder task. As in
the Nephele job, the Decoder task decompresses the encoded
video packets into individual frames.

The second MapReduce job starts with the three tasks
Merger, Overlay, and Encoder in the map phase. Following
our experiences with the computational complexity of these
tasks from our initial Nephele experiments, we decided to use
a Hadoop chain mapper and execute all of these three tasks
consecutively within a single map process. Finally, in the
reduce phase of the second MapReduce job, we placed the
task RTP Server. The RTP Server tasks again represented
the sink of our data streams.

In comparison to the classic Hadoop, the evaluation job
exploits two distinct features of the Hadoop Online proto-
type, i.e. the support for continuous queries and the ability
to express dependencies between different MapReduce jobs.
The continuous query feature allows to stream data from
the mapper directly to the reducer. The reducer then runs
a moving window over the received data. We set the window
size to 100 ms during the experiments. For smaller window
sizes, we experienced no significant effect on the latency.

4.2 Experimental Setup

We executed our evaluation job on a cluster of n = 10
commodity servers. Each server was equipped with two In-
tel Xeon E5430 2.66 GHz CPUs (four cores per CPU) and
32 GB RAM. The nodes were connected via regular Gigabit
Ethernet links and ran Linux (kernel version 2.6.39). Each
node ran a KVM virtual machine with eight cores. Inside
the virtual machines we used Linux (kernel version 2.6.38)
and Java 1.6.0.26 to run Nephele’s worker component. Ad-
ditionally, each virtual machine launched a Network Time
Protocol (NTP) daemon to maintain clock synchronization
among the workers. During the entire experiment, the mea-
sured clock skew was below 2 ms among the machines.

FEach worker node ran eight tasks of type Decoder, Merger,
Owverlay and RTP Server, respectively. The number of in-
coming video streams was fixed for each experiment and
they were evenly distributed over the Partitioner tasks. We
always grouped and subsequently merged four streams into
one aggregated video stream. Each video stream had a res-
olution of 320 x 240 pixels and was H.264 encoded. The ini-
tial output buffer size was 32 KB. Unless noted otherwise,
all tasks had a degree of parallelism of m = 80.

Those experiments that were conducted on Nephele with
latency constraints in place, specified one constraint ¢ =
(S,1,t) for each possible sequence

S:(61,’UD,62,UN1,€3,UO,€4,UE7€5) (4)

where vp,vnm,vo,vE are tasks of type Decoder, Merger,
Overlay and Encoder respectively. All constraints specified
the same upper latency bound I = 300 ms over the data
items within the past ¢ = 5 seconds. The measurement
interval on the worker nodes was set to 1 second so that the
running averages on the master node were computed over
sets of five measurement values. Due to their regular nature,
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Figure 6: Latency w/o optimizations (320 video
streams, degree of parallelism m = 80, 32 KB fixed
output buffer size)

the resulting 80* constraints could be efficiently represented
and managed using framework data structures.

4.3 Experimental Results

We evaluated our approach on the Nephele framework
with the job described in Section 4.1.1 in three scenarios
which are (1) without any kind of latency optimizations (2)
with adaptive output buffer sizing and (3) with adaptive
output buffer sizing as well as dynamic task chaining. As
a baseline for comparison with other frameworks we evalu-
ated the Hadoop Online Job described in Section 4.1.2 on
the same testbed.

4.3.1 Latency without Optimizations

First, we ran the Nephele job with constraints in place but
prevented the master node from applying any optimizations.
Figure 6 summarizes the measurement data received by the
master. As described in Section 3.2, the master node main-
tains running averages of the measured latencies of each task
and channel. Each sub-bar displays the arithmetic mean
over the running averages for tasks/channels of the same
type. For the plot, each channel latency is split up into
mean output buffer latency (dark gray) and mean transport
latency (light gray), which is the remainder of the channel
latency after subtracting output buffer latency. Hence, the
total height of each bar is the sum of the arithmetic means
of all task/channel latencies and gives an impression of the
current overall workflow latency. The solid and dot-dashed
lines provide information about the distribution of measured
sequence latencies (min, max, and median).

The total workflow latency fluctuated between 3.5 and 7.5
seconds. The figure clearly shows that output buffer and
channel latencies massively dominated the total workflow
latency, so much in fact that most task latencies are hardly
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visible at all. The main reason for this is the output buffer
size of 32 KB which was too large for the compressed video
stream packets between Partitioner and Decoder tasks, as
well as Encoder and RTP Server tasks. These buffers some-
times took longer than 1 second to be filled and when they
were placed into the input queue of a Decoder they would
take a while to processed. The situation was even worse
between the Encoder and RTP Server tasks as the num-
ber of streams had been reduced by four and thus it took
even longer to fill a 32 KB buffer. Between the Decoder and
Encoder tasks the channel latencies were much lower since
the initial buffer size was a better fit for the decompressed
images.

Another consequence of the buffer size were large varia-
tions in total workflow latency that stemmed from the fact
that task threads such as the Decoder could not fully utilize
their CPU time because they fluctuated between idling due
to input starvation and full CPU utilization once a buffer
had arrived.

The anomalous task latency of the Merger task stemmed
from the way we measure task latencies and limitations of
our frame merging implementation. Frames that needed to
be grouped always arrived in different buffers. With large
buffers arriving at a slow rate the Merger task did not always
have images from all grouped streams available and would
not produce any merged frames. This caused the framework
to measure high task latencies (see Section 3.1.1).

4.3.2 Latency with Adaptive Output Buffer Sizing

Figure 7 shows the results when using only adaptive buffer
sizing to meet latency constraints. The structure of the plot
is identical to Figure 6 which is described in Section 4.3.1.

Our approach to adaptive buffer sizing quickly reduced
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Figure 8: Latency with adaptive buffer sizing and
task chaining (320 video streams, degree of paral-
lelism m = 80, 32 KB initial output buffer size)

the buffer sizes on the channels between Partitioner and
Decoder tasks, as well as Encoder and RTP server tasks.
The effect of this is clearly visible in the diagram, with an
initial workflow latency of 4 seconds that is reduced to 400
ms on average and 500 ms in the worst case. The latency
constraint of 300 ms has not been met, however we attained
a latency improvement of one order of magnitude compared
to the unoptimized Nephele job.

The convergence phase at the beginning of the job during
which buffer sizes were decreased took approx. 4 minutes.
There are several reasons for this phenomenon. First, as the
master node started with output buffers whose lifetime was
often larger than the measurement interval there often was
not enough measurement data for the master to act upon
during this phase. In this case it waited until enough mea-
surement data were available before checking for constraint
violations. Second, after each output buffer size change the
master node waits until all old measurements for the re-
spective channel have been flushed out before revisiting the
violated constraint, which took at least 5 seconds each time.

4.3.3 Latency with Adaptive Output Buffer Sizing and
Task Chaining

Figure 8 shows the results when using adaptive buffer siz-
ing and dynamic task chaining. The latency constraints were
identical to those in Section 4.3.2 and the structure of the
plot is again identical to Figure 6.

Our task chaining approach chose to chain the Decoder,
Merger, Overlay and Encoder tasks because the sum of their
CPU utilizations did not fully saturate one CPU core.

After the initial calibration phase, the total workflow la-
tency stabilized at an average of around 240 ms and a maxi-
mum of approx. 300 ms. This finally met all defined latency
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constraints, which caused the optimizer to not trigger any
further actions. In our case this constituted another 40%
improvement in latency compared to not using task chain-
ing and an improvement by a factor of at least 15 compared
to the unoptimized Nephele job.

4.3.4 Latency in Hadoop Online

Figure 9 shows a bar plot of the task and channel latencies
obtained from the experiments with the Hadoop Online pro-
totype. The plot’s structure is again identical to Figure 6,
however the output buffer latency has been omitted as these
measurements are not offered by Hadoop Online.

Similar to the unoptimized Nephele job, the overall pro-
cessing latency of Hadoop Online was clearly dominated by
the channel latencies. Except for the tasks in the chain map-
per, each data item experienced an average latency of about
one second when being passed on from one task to the next.

Due to limitations in our setup and Hadoop Online we
could only deploy one processing pipeline per host. There-
fore, we had to reduce the degree of parallelism for the ex-
periment to m = 10 and could only process 80 incoming
video streams concurrently. A positive effect of this reduc-
tion is a significantly lower task latency of the Merger task
because, with fewer streams, the task had to wait less often
for an entire frame group to be completed.

Apart from the size of the window reducer, we also varied
the number of worker nodes n in the range of 2 to 10 as a
side experiment. However, we did not observe a significant
effect on the channel latency either.

5. RELATED WORK

Over the past decade stream processing has been the sub-
ject of vivid research. In terms of scalability, the existing

approaches essentially fall into three categories: Centralized,
distributed, and massively-parallel stream processors.

Several centralized systems for stream processing have
been proposed, such as Aurora [2] and STREAM [5, 15].
Aurora is a DBMS for continuous queries that are con-
structed by connecting a set of predefined operators to a
DAG. The stream processing engine schedules the execu-
tion of the operators and uses load shedding, i.e. dropping
intermediate tuples to meet QoS goals. At the end points
of the graph, user-defined QoS functions are used to spec-
ify the desired latency and which tuples can be dropped.
STREAM presents additional strategies for applying load-
shedding, such as probabilistic exclusion of tuples. While
these systems have useful properties such as respecting la-
tency requirements, they run on a single host and do not
scale well with rising data rates and numbers of data sources.

Later systems such as Aurora®/Medusa [10] support dis-
tributed processing of data streams. An Aurora* system is
a set of Aurora nodes that cooperate via an overlay net-
work within the same administrative domain. In Aurora*
the nodes can freely relocate load by decentralized, pairwise
exchange of Aurora stream operators. Medusa integrates
many participants such as several sites running Aurora™® sys-
tems from different administrative domains into a single fed-
erated system. Borealis [1] extends Aurora*/Medusa and
introduces, amongst other features, a refined QoS optimiza-
tion model where the effects of load shedding on QoS can
be computed at every point in the data flow. This enables
the optimizer to find better strategies for load shedding.

The third category of possible stream processing systems
is constituted by massively-parallel data processing systems.
In contrast to the previous two categories, these systems
have been designed to run on hundreds or even thousands of
compute nodes in the first place and to efficiently transfer
large data volumes between them. Traditionally, those sys-
tems have been used to process finite blocks of data stored
on distributed file systems. However, many of the newer sys-
tems like Dryad [14], Hyracks [8], CIEL [16], or our Nephele
framework [18] allow to assemble complex parallel data flow
graphs and to construct pipelines between the individual
parts of the flow. Therefore, these parallel data flow sys-
tems in general are also suitable for streaming applications.
Recently, there have also been efforts to extend MapReduce
by streaming capabilities [9, 11]. However, the general focus
of these systems has still been high-throughput batch-job
execution and QoS aspects have not been considered so far.

The systems S4 [17] and Storm® can also be classified as
massively-parallel data processing systems, however, they
stand out from the other systems as they have been designed
for low-latency stream processing from the outset. These
systems do not necessarily follow the design principles ex-
plain in Section 2.1. For example, Twitter Storm does not
use intermediate queues to pass data items from one task to
the other. Instead, data items are passed directly between
tasks using batch messages on the network level to achieve
a good balance between latency and throughput.

None of the systems from the third category has so far
offered the capability to express high-level QoS goals as part
of the job description and let the system optimize towards
these goals independently, as it was common for previous
systems from category one and two.

Shttps://github.com/nathanmarz/storm



6. CONCLUSION AND FUTURE WORK

Growing numbers of commodity devices are equipped with
sensors capable of producing continuous streams of rich sen-
sor data, such as video and audio in the case of mobile
phones or power consumption data in the case of smart me-
ters that are being deployed at consumer homes as part of
the smart grid initiative. High numbers of such devices will
produce large amounts of streamed data that will raise the
bar for future stream processing systems both in terms of
processing throughput and latency, as some use cases re-
quire the data to be processed within a given time span.

In this paper we examined using existing massively-parallel
data processing frameworks such as Nephele for this purpose
and presented strategies to trade off throughput versus la-
tency to meet latency constraints while keeping the data
throughput as high as possible. We showed how our strate-
gies, adaptive output buffer sizing and dynamic task chain-
ing, can be used to meet user-defined latency constraints for
a workflow. We provided a proof-of-concept implementation
of our approach and evaluated it using a video streaming use
case. We found that our strategies can improve workflow la-
tency by a factor of at least 15 while preserving the required
data throughput.

We see the need for future work on this topic in several
areas. The Nephele framework is part of a bigger software
stack for massively-parallel data analysis developed within
the Stratosphere project”. Therefore, extending the stream-
ing capabilities to the upper layers of the stack, in particular
to the PACT programming model [6], is of future interest.
Furthermore, we plan to explore strategies for other QoS
goals such as jitter and throughput that exploit the capabil-
ity of a cloud to elastically scale on demand.
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