
Peeking into the Optimization of Data Flow
Programs with MapReduce-style UDFs

Fabian Hueske ∗1, Mathias Peters †2, Aljoscha Krettek ∗3, Matthias Ringwald ∗4, Kostas Tzoumas ∗5,
Volker Markl ∗6, Johann-Christoph Freytag †7

∗Technische Universität Berlin, Germany
1,5,6firstname.lastname@tu-berlin.de

3,4firstname.lastname@campus.tu-berlin.de
†Humboldt Universität zu Berlin, Germany

2firstname.lastname@informatik.hu-berlin.de
7lastname@dbis.informatik.hu-berlin.de

Abstract— Data flows are a popular abstraction to define data-
intensive processing tasks. In order to support a wide range of
use cases, many data processing systems feature MapReduce-
style user-defined functions (UDFs). In contrast to UDFs as
known from relational DBMS, MapReduce-style UDFs have less
strict templates. These templates do not alone provide all the
information needed to decide whether they can be reordered with
relational operators and other UDFs. However, it is well-known
that reordering operators such as filters, joins, and aggregations
can yield runtime improvements by orders of magnitude.

We demonstrate an optimizer for data flows that is able to
reorder operators with MapReduce-style UDFs written in an
imperative language. Our approach leverages static code analysis
to extract information from UDFs which is used to reason about
the reorderbility of UDF operators. This information is sufficient
to enumerate a large fraction of the search space covered by
conventional RDBMS optimizers including filter and aggregation
push-down, bushy join orders, and choice of physical execution
strategies based on interesting properties.

We demonstrate our optimizer and a job submission client
that allows users to peek step-by-step into each phase of the
optimization process: the static code analysis of UDFs, the
enumeration of reordered candidate data flows, the generation
of physical execution plans, and their parallel execution. For
the demonstration, we provide a selection of relational and non-
relational data flow programs which highlight the salient features
of our approach.

I. INTRODUCTION

The collected amount of data, as well as the complexity
of data analysis tasks performed are rapidly increasing. Over
the last years, a large body of research has been devoted
to enable complex analysis on huge amounts of data. Many
systems that have been proposed for big data analytics are
based on the concept of parallel data flows, including parallel
relational DBMS and MapReduce. In recent years, several
of higher-level languages and programming interfaces have
been designed to ease the definition of complex processing
tasks [1, 2, 3, 4, 5]. These languages are based on algebraic
operators such as filters, joins, (un-)nesting, and aggregation.
However, many of these abstractions also provide interfaces
for MapReduce-style user-defined functions (UDFs) [1, 2, 3,
4, 6, 7], which are written in an imperative programming
language such as Java or C++ and obey certain restrictions
on the function signature.

Query optimization is a key technology for data processing
systems. A reasonable choice of operator order and physical
execution strategies often yields runtime improvements by
orders of magnitude over arbitrary alternatives. In the context
of algebraic expressions as for example relational queries,
optimization is well-researched. Due to their strict templates,
scalar, aggregation, and table-generation UDFs can be, in prin-
ciple included into the optimization process [8, 9]. However,
data flows that include UDFs with more general templates
such as MapReduce-style UDFs pose a big challenge for
optimization.

Recently, we have shown how static code analysis can be
used to change the order of MapReduce-style UDFs in data
flow programs [10, 11]. Here, we demonstrate the optimization
of data flows specified as Pact programs [12]. Our prototype is
based on the Stratosphere system [13]. It features a static code
analysis component, and a cost-based optimizer, which sup-
ports a large subset of the possible transformations supported
by traditional relational optimizers. The set of transformations
includes selection and join reordering, and invariant group
transformations [14], as well as reasoning about interesting
properties such as order and data partitioning [15]. Our demon-
strator shows step-by-step the optimization of Pact programs,
starting with the static code analysis, the optimization process,
and finally the parallel execution of a chosen execution plan.
We demonstrate the features of our approach using a set
of analytical data flow programs from relational and non-
relational domains.

The remainder of this paper is structured as follows. Sec-
tion II introduces the Pact programming model, discusses
reordering conditions for Pact operators, and presents an
overview of the optimization process. Section III presents our
demonstration setup, and Section IV concludes.

II. BACKGROUND

A. The Pact Programming Model

The Pact programming model [12] is a generalization and
extension of the MapReduce programming model [16]. Pact
programs are specified as DAGs where data sources, operators,
and data sinks are connected by data transfer channels. Data
is represented as sets of records with arbitrarily typed fields.



Data sources have no incoming channels and generate records
usually by deserializing them from input files. Operators
receive data, process it, and forward their result to the upstream
operator(s) in the DAG. Data sinks have no outgoing channels;
they usually transform their input into a suitable format for
presentation or further processing.

A Pact operator consists of a second-order system function
(SOF) and a first-order user-defined function (UDF). The
SOF maps the operator’s input data into subsets which are
independently processed by passing them to the UDF. Hence,
the parallelization opportunities for an operator are determined
by the SOF alone. Currently, our system supports five SOFs
which are shown in Figure 1. The two unary SOFs, Map
and Reduce, have the same semantics as in MapReduce. The
remaining SOFs process data from two inputs. Cross forms the
Cartesian product of both inputs and calls its UDF for each
pair of records. Match calls the UDF for each pair of records
from both inputs where their key fields are the same. Hence, it
resembles an equi-join. CoGroup forms a group for each key,
and calls the UDF with all records that share the same key in
both inputs. In this work, we only consider tree-shaped Pact
programs, i. e., operators forward their results to exactly one
successor.

B. Reordering Conditions for Pact Operators

UDFs are written in imperative code; hence, data processing
systems are not aware of their exact semantics. In general, two
Pact operators cannot be reordered if they have conflicting
read-write or write-write accesses on any record field. There-
fore, the optimizer depends, for each operator, on information
about the fields that its UDF reads and writes in order to reason
about valid transformations. This information is provided by
so-called read and write sets. Transformations that involve
grouping operators such as Reduce and CoGroup require in
addition that the cardinality of input groups is not affected by
the rewrite. For example, a Reduce may only be reordered with
a Map operator, if the Map operator does not change the size
of Reduce’s input groups or the Map operator filters entire key
groups, i. e., filters on the Reduce key. Therefore, the optimizer
also requires information about lower and upper bounds of an
operator’s output cardinality in addition to read and write sets.
We refer to our prior work for a detailed discussion and proofs
of the reordering conditions [10].

C. Optimization of Pact Programs

Relational DBMS optimizers compile queries posed in a
declarative language into physical execution plans. Often, the
compilation process is divided into two stages. First, logical
rewriting applies algebraic rewrite rules such as filter push-
down, and resolving of nested subqueries to an algebraic
representation of the query. Second, a physical execution plan
is generated by replacing the logical operators of the rewritten
algebraic query with physical operators1. Often, the selection

1Although join reordering is conceptually a logical rewrite, join orders are
enumerated during physical optimization, since the optimal order depends on
the selected execution strategies.

of physical operators is based on execution cost estimates.
Pact programs differ significantly from declarative queries.

Instead of algebraic expressions, Pact programs are trees
of operators whose semantics are mostly unknown due to
their UDFs. Hence, many techniques from traditional query
optimization cannot be applied. Our optimizer for Pact pro-
grams operates in three steps. First, a static code analysis
component peeks into the byte code of each UDF and extracts
information that the optimizer requires to reason about valid
transformations. Second, the optimizer enumerates all valid
reordered data flow alternatives. Finally, a cost-based optimizer
computes a physical execution plan for each alternative, and
returns the plan with the least estimated execution costs. In
the following, we discuss the aforementioned three steps in
more detail.

Static Code Analysis: Our optimizer derives read and
write sets as well as output cardinality bounds from UDFs by
statically analyzing their imperative code. In a nutshell, the
analysis exploits the fact that records can only be accessed,
modified, and emitted via a restricted API2. Therefore, we
can easily identify statements that read from, write to, or emit
a record. The analysis algorithm uses control and data flow
graphs provided by a static code analysis framework. Our
approach guarantees safe, albeit conservative estimations of
the actual read and write sets and output cardinality bounds,
such that only valid reorderings will be considered by the
optimizer. We refer the reader to reference [11] for a detailed
description of the algorithm.

Order Enumeration: Using the information which was
derived by static code analysis, the optimizer enumerates
all valid reorderings for the given program. In contrast to
traditional query optimization, the program is represented as
a specific operator tree and not as an algebraic expression.
Our enumeration algorithm is based on transformations that
switch the order of two neighboring operators and uses top-
down recursive descent. The algorithm computes all valid
reorderings of a (sub)plan p in two steps. First, it computes all
candidate root operators of p by enumerating all alternatives
for p’s subplans. Second, it recursively enumerates all alterna-
tive subplans for each root operator. We presented a detailed
description of the enumeration algorithm in prior work [10].

Execution Strategy Selection: After all reordered alterna-
tives of the Pact program have been enumerated, a cost-based
optimizer is called for each alternative to compute an execution
plan by choosing physical execution strategies. The set of
supported execution strategies is well-known from traditional
parallel databases and includes partitioning, broadcasting, ex-
ternal sorts, and merge- and hash-joins. The optimizer’s cost
model is a combination of the estimated network I/O, disk
I/O, and CPU costs of UDFs3. During plan enumeration,

2Note that our API consists of basic operations which are also supported
by other programming interfaces as for example Pig [1].

3The programming interface provides compiler hints such as the selectivity
and CPU costs of a UDF to improve cost estimates. These hints can be
manually annotated, set by a higher-level language compiler, or possibly
observed during runtime.



Input Independent
Subsets

Input 1

Input 2

Independent
Subsets

Input 1

Input 2

Independent
Subsets

Input 1

Input 2

Independent
Subsets

Input Independent
Subsets

Key Fields

Value Fields
(a) (b) (c) (d) (e)

Fig. 1. (a) Map, (b) Reduce, (c) Cross, (d) Match, and (e) CoGroup second-order functions.

the optimizer exploits the write set information derived by
the static code analysis to reason about the propagation of
interesting properties. A physical data property such as a
partitioning on a field f is still present after an operator o
was applied, if o did not modify f , i. e., f must not be
in o’s write set. Finally, the plan with minimum estimated
costs is selected, and submitted for execution. Details on the
selection of physical execution strategies can be found in prior
work [12]. Note that it is possible to merge top-down order
enumeration and cost-based execution strategy selection into a
single step. We plan to integrate them in a later system release.

III. DEMONSTRATION

We demonstrate our optimizer for UDF data flows. The
optimizer transforms data flows specified as Pact programs
into physical execution plans, and executes them in parallel
on the Nephele execution engine [17]. Our demonstration
focuses on the visualization of the optimization process, i. e.,
we show in detail how the static code analysis component
derives optimization information from UDF code, how re-
ordered alternatives are enumerated, and show the physical
execution plans that result from cost-based optimization. We
provide a selection of Pact programs from relational and non-
relational domains which demonstrate the salient features of
our optimization approach. In the following, we present the
Pact programs we provide for the demonstration and describe
in detail how the optimization process is visualized.

A. Demonstrated Data Flows

We implemented a selection of relational analytical queries
as Pact programs. Such tasks are commonly executed on
massively parallel systems, as indicated by the popularity of
higher-level languages for structured data analysis [4, 3, 5].
The provided programs resemble queries of the TPC-H bench-
mark and demonstrate that our approach is able to perform
many rewrites which are known from relational optimizers
such as filter reordering, bushy join-order enumeration, and
limited forms of aggregation push-down. In addition to rela-
tional queries, we provide tasks from non-relational domains
such as clickstream processing and data transformation as
common in ETL workloads. These tasks show that our ap-
proach is able to reorder non-relational operators in data flows,
a feature that we believe is unique among current systems.

B. Demonstration of the Optimization Process

We demonstrate a job submission client that visualizes the
optimization process step-by-step. The demonstration starts by
choosing a Pact program, providing program parameters, and

submitting it to the optimizer. In the following we describe
how the submission client visualizes static code analysis,
operator order enumeration, the physical execution plans, and
the parallel execution of the program.

Static Code Analyzer: The submission client lists all
UDFs of the submitted program and shows the code of selected
UDFs in typed 3-address code [18], a representation that
is very suitable for code analysis. The client displays the
information that was extracted from the UDF, i. e., read and
write sets and bounds on the output cardinality, and visualizes
how it was derived from the 3-address code by highlighting
the relevant paths along the control and data flows. Figure 2
a) shows a screenshot of the static code analysis visualization.

Data Flow Optimizer: During the enumeration of re-
ordered data flow alternatives, the optimizer memorizes all
enumerated subplans. This information is read by the submis-
sion client and displayed in a browsable fashion such that the
space of enumerated reordered alternatives can be explored
by replacing any subplan with an equivalent alternative. For
each operator its read and write set information is displayed
to help reasoning about reordering conflicts. In addition, the
client features a step-by-step visualization of the enumeration
process, i. e., it shows all alternative plans in the order in which
they were enumerated. Figure 2 b) is a screenshot of the plan
enumeration visualization.

Physical Execution Plans: For each reordered data flow
alternative, the cost-based optimizer computes the physical
execution plan with least estimated costs by choosing data
shipping and local processing strategies. The submission client
shows the optimized physical execution plans for all alter-
natives ordered by their estimated cost. The visualization
shows the chosen operator execution strategies, data properties
(sorted, grouped, partitioned), and estimates such as data size,
cardinality, number of UDF calls, and costs. Figure 2 c) shows
a visualization of a physical execution plan.

Program Execution: Finally, a selected execution plan
is submitted to the Nephele execution engine [17]. Nephele
executes acyclic data flows consisting of sequential processing
tasks which are connected via data transfer channels. Nephele
splits the execution of a task into multiple subtasks which are
distributed among compute nodes and executed in parallel.
The submission client visualizes the execution as shown in
Figure 2 d). It displays the parallel data flow graph, consisting
of subtasks (colored rectangles) and their connections (lines).
The status of a subtask (waiting, running, finished, failed) is
indicated by its color. In addition, information about the aggre-
gated resources consumption (CPU load, Memory usage, and
network traffic) of the cluster’s compute nodes is displayed.



Fig. 2. Screenshots: (a) static code analysis, (b) operator order enumeration, (c) physical execution plans, (d) execution.

IV. CONCLUSION

We demonstrate the optimization of parallel data flows that
contain MapReduce-style user-defined operators, an abstrac-
tion which is very popular and supported by several of today’s
parallel data processing frameworks. Our optimizer employs
static code analysis to extract information from UDF code
which is necessary to reason about operator reordering. We
present a job submission client that visualizes all steps of
the optimization process, i. e., code analysis, operator order
enumeration, choice of physical execution plans, and finally
the parallel execution. Providing a selection of relational
and non-relational data flow programs, we demonstrate that
our approach is able to resemble many optimizations which
are known from relational optimizers but also includes non-
relational operators into optimization.

ACKNOWLEDGMENTS

This research was funded by the German Research Foun-
dation under grant FOR 1036. We thank our coauthors from
previous work [10], and the Stratosphere team.

REFERENCES

[1] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in SIGMOD Conference,
2008, pp. 1099–1110.

[2] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C.-C. Kanne, F. Özcan, and E. J. Shekita, “Jaql: A scripting language
for large scale semistructured data analysis,” PVLDB, vol. 4, no. 12, pp.
1272–1283, 2011.

[3] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “Scope: easy and efficient parallel processing of massive
data sets,” PVLDB, vol. 1, no. 2, pp. 1265–1276, 2008.

[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive - a warehousing solution over a map-
reduce framework,” PVLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[5] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychag-
ina, Y. Kwon, and M. Wong, “Tenzing a sql implementation on the
mapreduce framework,” PVLDB, vol. 4, no. 12, pp. 1318–1327, 2011.

[6] E. Friedman, P. M. Pawlowski, and J. Cieslewicz, “Sql/mapreduce: A
practical approach to self-describing, polymorphic, and parallelizable
user-defined functions,” PVLDB, vol. 2, no. 2, pp. 1402–1413, 2009.

[7] http://www.greenplum.com/technology/mapreduce.
[8] J. M. Hellerstein, “Optimization techniques for queries with expensive

methods,” ACM Trans. Database Syst., vol. 23, no. 2, pp. 113–157, 1998.
[9] S. Chaudhuri and K. Shim, “Optimization of queries with user-defined

predicates,” ACM Trans. Database Syst., vol. 24, no. 2, pp. 177–228,
1999.

[10] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek,
and K. Tzoumas, “Opening the black boxes in data flow optimization,”
PVLDB, vol. 5, no. 11, pp. 1256–1267, 2012.

[11] F. Hueske, A. Krettek, and K. Tzoumas, “Enabling rewrite optimizations
of data flow programs through static code analysis,” in XLDI Workshop
(to appear), 2012.

[12] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: a programming model and execution framework for
web-scale analytical processing,” in SoCC, 2010, pp. 119–130.

[13] http://stratosphere.eu.
[14] S. Chaudhuri and K. Shim, “Including group-by in query optimization,”

in VLDB, 1994, pp. 354–366.
[15] J. Zhou, P.-Å. Larson, and R. Chaiken, “Incorporating partitioning and

parallel plans into the scope optimizer,” in ICDE, 2010, pp. 1060–1071.
[16] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in OSDI, 2004, pp. 137–150.
[17] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in

the cloud,” in SC-MTAGS, 2009.
[18] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques and Tools. Pearson, 2006.


