# Ask "what," not "how"

Kostas Tzoumas

**Data is an important asset** video & audio streams, sensor data, RFID, GPS, user online behavior, scientific simulations, web archives, ...

## Volume

Handle petabytes of data

## Velocity

Handle high data arrival rates

## Variety

Handle many heterogeneous data sources

## Veracity

Handle inherent uncertainty of data

# Data

# Analysis

### Four "I"s for Big Analysis text mining, interactive and ad hoc analysis, machine learning, graph analysis, statistical algorithms

## Iterative

Model the data, do not just describe it

## Incremental

Maintain the model under high arrival rates

## Interactive

Step-by-step data exploration on very large data

## Integrative

Fluent unified interfaces for different data models

# MapReduce and Hadco





# SQL analytics with Hadoop Pitfalls:

INSERT OVERWRITE TABLE pv\_friends
SELECT pv.\*, u.gender, u.age, f.friends
FROM page\_view pv JOIN user u ON (pv.userid = u.id) JOIN friend\_list f ON (u.id = f.uid)
WHERE pv.date = '2008-03-03';

# Lacking indeclarativity

Note that Hive only supports equi-joins. Also it is best to put the largest table on the rightmost side of the join to get the best performance.



 HDFS-based data exchange
 Sort the only grouping operator
 Hadoop engine tailored to simple aggregations



# Advanced Analytics



Analytics that **model the data** to reveal hidden relationships**, not just describe** the data.

E.g., machine learning, statistics, graph analysis

**Increasingly important** from a market perspective.

Very different than SQL analytics: different languages and access patterns (iterative vs. one-pass programs).

Hadoop toolchain poor; R, Matlab, etc not parallel.

# Use case in all verticals

#### Manufacturing

**Example:** Data-driven quality control and assurance, demand forecasting, sales and operation planning, process optimization

#### Retail

**Example:** Improve campaign ROI by optimizing advertising channels, market basket analysis, fraud detection, social trend analysis, product recommendation

#### **Media and Communications**

**Example:** Risk management, analytics on phone call logs, risk management, sentiment analysis, clickstream and call analysis

#### **Travel and tourism**

**Example:** Improve personalized customer experience in hotels, estimate no-show in flights, route planning

#### Social and e-commerce

**Example:** Targeted customer experience, explore new business models, real-time recommendations, social graph analysis, game analytics



**Big data lives in Hadoop.** Hadoop clusters offer very **low effective storage cost**, and are becoming a **data vortex**, attracting **cross-departmental data**.



Companies want to perform advanced and predictive analytics to maximize ROI of their data assets by modeling the data, not just describing it.

# How do we bring advanced analytics to the world of big data?

# What, not how

#### Recipe for success: declarativity

User specifies **what** information to extract out of the data, **not how** the system extracts the information.

This is what relational databases pioneered in the 70s resulting in a vibrant research community and a billion dollar industry. Big data consumers in the future

people with data analysis skills

> systems programming experts

Big data consumers now

## Desiderata for next-gen big data platforms: Usability

#### 3 million R users 10 million **Excel users** 70,000 Hadoop users

"the market faces certain challenges such as **unavailability of qualified and experienced work professionals**, who can effectively handle the Hadoop architecture."

## Desiderata for next-gen big data platforms: Performance



Performance difference from days to minutes enables real time decision making and widespread use of data within the organization.

How to lift declarativity from the closed world of relational algebra to the open world of advanced analytics.

# Step I: Specify

```
// get the customers with their debit
val debits: (String, Double) = sql(
    "SELECT customerId, debit FROM customer_accounts;")
// get the number of warned invoices in the last
// 12 and 6 months
val warnings: (String, Int, Int) = sql
    "SELECT R12.customerId, R12.cnt, R6.cnt
        FROM (...) R12 LEFT OUTER JOIN (...) R6
        ON (R6.customerId = R12.customerId);")
// number of contracts a customer has
val numContracts : (String, Int) = sql(
    "SELECT customerId, numContracts FROM customers;")
```

```
// join the data into one data point
case class DataPoint(x: Vector, y: Double)
```

// run regression with dimensionality 3 for 40 iterations
val weights: Vector = LogRegression(3, dataPoints, 40)

Unify data and programming models in a declarative abstraction.

SQL for extracting enterprise data from databases.

General-purpose programming for feature extraction and normalization.

Statistical libraries for advanced analysis.

# First step for declarative analytics

Scala: functional and object-oriented JVM language, excellent basis for domain-specific language development. Coolest kid in the block ☺

Feels like a scripting language, but is not restricted to a fixed data model like Pig, Hive, etc.

Scala's extensible compiler architecture is a good match for implementing optimizers.

# Step 2: Optimize

Each color is a differently written program that produces the same result but has very different performance depending on small changes in the data set and the analysis requirements

Data characteristics change



**Query optimizers:** the enabling technology for SQL data warehousing and BI

Successful industrial application of artificial intelligence

Currently, no other system can optimize non-relational data analysis programs. Use a combination of compiler and database technology to lift optimization beyond relational algebra. Derive properties of user-defined functions via code analysis and use these to mimic a relational database optimizer.







# Step 3: Execute

A fast, massively parallel database-inspired backend.

Truly scales to diskresident large data sets.

Built-in support for **iterative programs:** predictive and advanced analytics (machine learning, graph processing, stats) are all iterative.

|                       |                                 | one pass<br>dataflow  | many pass<br>dataflow |  |
|-----------------------|---------------------------------|-----------------------|-----------------------|--|
|                       | map<br>reduce                   |                       |                       |  |
|                       |                                 |                       |                       |  |
|                       | MapReduce                       | Impala,               | Stratosphere          |  |
| Text                  | ~                               |                       | ~                     |  |
| Aggregation           | ~                               |                       | ~                     |  |
| ETL                   | ~                               | ~                     | ~                     |  |
| SQL                   | Hive is too<br>slow             | <ul> <li></li> </ul>  | ~                     |  |
| Advanced<br>analytics | Mahout is slow<br>and low level | Madlib is<br>too slow | ~                     |  |

Stratosphere is an award-winning open-source platform: I5 man-years of R&D,I50k LOC, 3 million € behind it.



Stratosphere is the only Hadoop-compatible nextgeneration big data analytics platform developed in Europe that you can download and use right now.

#### Visualization and reporting tools, e.g., Datameer



Hadoop storage and cluster management: HDFS, Yarn

| Ready to Run Package | > |
|----------------------|---|
| Maven Dependencies   | > |
| Virtual Machine      | > |
| Vagrant              | > |
| Debian Package       | > |
| Source               | > |

#### Downloads

There are plenty of ways to get Stratosphere. Pick any of the following to start.

#### **Ready To Run Package**

Download the ready to run binary package if you want to use Stratosphere on your computer or cluster.

Stratosphere has dependencies to Hadoop (e.g. HDFS and HBase). Choose a Stratosphere distribution that matches your Hadoop version. In doubt, use the Stratosphere version for Hadoop 1.2.X.

| Hadoop 1.2.x | Hadoop 2 (Y/ | ARN)                                     |  |
|--------------|--------------|------------------------------------------|--|
|              |              | O Download Stratosphere for Hadoop 1.2.x |  |
|              |              |                                          |  |

Make sure to checkout the Documentation for further help.

#### Virtual Machine

Use a virtual machine if you don't want to run on your native system.

We provide a virtual machine image that comes with a fresh Stratosphere installation and small data sets to play around with. The image will run on both Virtual Box and VMWare.

Ownload VM Image

#### Vagrant

Let Vagrant set up a virtual machine with Stratosphere installed for you.

| wget  | htt | p://dev.stratosphere.eu/vm/Vagrantfile |
|-------|-----|----------------------------------------|
| vagra | nt  | up                                     |
| vagra | nt  | ssh                                    |

#### **Debian Package**

We have also prepared a Debian repository for Debian/Ubuntu systems.

# vim /etc/apt/sources.list.d/stratosphere.list deb http://dev.stratosphere.eu/repo/binary precise main # apt-get update

opt-get install stratosphere-dist

# <u>www.stratosphere.eu/</u> <u>downloads</u>

#### www.stratosphere.eu/quickstart

#### What would you like to do?

There are plenty of ways to explore Stratosphere. Install it one one or more machines, if you want to get to know the infrastructure. Application developers can also start immediately with their favorite programming language and run programs locally from within their favorite IDE.



23

programming abstraction. Run and debug your

programs locally.

```
val input = TextFile(textInput)
val words = input
.flatMap
        { line => line.split(" ") }
val counts = words
.groupBy
        { word => word }
.count()
```

```
val plan = new ScalaPlan(Seq(output))
```

few Log | View Stdout

Briddiosi Heite Sobi Hathoelt

#### Running Jobs

Risk Management Aggregations (ID: 1944df7f72121c0000dac7dbf1750000)

| Name                                      | Tasks | Darting | Reading | Pinished | Concelled | Pailed |            |
|-------------------------------------------|-------|---------|---------|----------|-----------|--------|------------|
| Billing accounts file                     | 64    |         |         |          | ¢         | ē.     | ±          |
| Read customers file                       | 64    |         | •       |          |           |        | ž          |
| Persons File                              | 64    |         | 16      | 40       |           |        | <u>+</u> 2 |
| Invoices File                             | 64    |         | 59      | 8        |           |        | <u>1</u>   |
| filter highest rated billing accounts     | 64    |         | •       |          |           |        | <u>1</u> 2 |
| filter active billing accounts            | 64    |         |         |          |           |        | ±          |
| Customer Age                              | 64    |         |         |          |           |        | ±          |
| Group persons by person_id                | 64    |         | 64      |          |           |        | ±          |
| aggregate invoices                        | 64    |         | 64      |          |           |        | <u>+</u>   |
| filter from all invoices: month ++ 24     | 64    |         | 59      | 8        |           |        | <u>11</u>  |
| Count active and oldest billing accs      | 64    |         |         | 64       |           |        | <u>*</u>   |
| Customer Status                           | 64    |         | •       |          |           |        | ±          |
| Write Age                                 | 64    |         |         |          |           |        | ±          |
| Join persons with customers               | 64    |         | 64      |          |           |        | ±          |
| #0 filter invoices: month <= 3            | 64    | 64      |         |          |           |        | Ľ          |
| #1 filter invoices: month <= 6            | 64    | 64      |         |          |           |        | Ľ          |
| #2 filter invoices: month <= 12           | 64    | 64      |         |          |           |        | <u>1</u>   |
| #3 filter invoices: month += 24           | 64    | 64      |         |          |           |        | <u>1</u> 2 |
| Jain credit invoices with active accounts | 64    |         | 64      |          |           |        | ±          |



## Help us shape the future of Big Data and the Stratosphere platform!

We are looking for contributions and pilot customers: github.com/stratosphere/stratosphere/wiki/Starter-Jobs Try out Stratosphere and give us feedback Work with us to implement your use case

Visit <u>www.stratosphere.eu</u> <u>www.github.com/stratosphere</u> Contact <u>kostas.tzoumas@tu-berlin.de</u> Tweet #StratoSummit